
Appendix A
Review of Topology

This book is written for readers who have already completed a rigorous course in
basic topology, including an introduction to the fundamental group and covering
maps. A convenient source for this material is [LeeTM], which covers all the topo-
logical ideas we need, and uses notations and conventions that are compatible with
those in the present book. But almost any other good topology text would do as
well, such as [Mun00, Sie92, Mas89]. In this appendix we state the most important
definitions and results, with most of the proofs left as exercises. If you have had
sufficient exposure to topology, these exercises should be straightforward, although
you might want to look a few of them up in the topology texts listed above.

Topological Spaces

We begin with the definitions. Let X be a set. A topology on X is a collection T of
subsets of X , called open subsets, satisfying

(i) X and ¿ are open.
(ii) The union of any family of open subsets is open.

(iii) The intersection of any finite family of open subsets is open.

A pair .X;T / consisting of a set X together with a topology T on X is called a
topological space. Ordinarily, when the topology is understood, one omits mention
of it and simply says “X is a topological space.”

There are a host of constructions and definitions associated with topological
spaces. Here we summarize the ones that are most important for this book.

Suppose X is a topological space, p 2X , and S �X .

� A neighborhood of p is an open subset containing p. Similarly, a neighborhood
of the set S is an open subset containing S . (Be warned that some authors use the
word “neighborhood” in the more general sense of a subset containing an open
subset containing p or S .)
� S is said to be closed if X X S is open (where X X S denotes the set difference
fx 2X W x … Sg).
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� The interior of S , denoted by IntS , is the union of all open subsets of X con-
tained in S .
� The exterior of S , denoted by ExtS , is the union of all open subsets of X con-

tained in X X S .
� The closure of S , denoted by xS , is the intersection of all closed subsets of X

containing S .
� The boundary of S , denoted by @S , is the set of all points ofX that are in neither

IntS nor ExtS .
� A point p 2 S is said to be an isolated point of S if p has a neighborhood U �X

such that U \ S D fpg.
� A point p 2 X (not necessarily in S ) is said to be a limit point of S if every

neighborhood of p contains at least one point of S other than p.
� S is said to be dense in X if xS D X , or equivalently if every nonempty open

subset of X contains at least one point of S .
� S is said to be nowhere dense in X if xS contains no nonempty open subset.

The most important concepts of topology are continuous maps and convergent
sequences, which we define next. Let X and Y be topological spaces.

� A map F W X ! Y is said to be continuous if for every open subset U � Y , the
preimage F �1.U / is open in X .
� A continuous bijective map F W X! Y with continuous inverse is called a home-

omorphism. If there exists a homeomorphism from X to Y , we say that X and Y
are homeomorphic.
� A continuous map F W X! Y is said to be a local homeomorphism if every point
p 2 X has a neighborhood U � X such that F.U / is open in Y and F restricts
to a homeomorphism from U to F.U /.
� Given a sequence .pi /1iD1 of points in X and a point p 2 X , the sequence is

said to converge to p if for every neighborhood U of p, there exists a positive
integer N such that pi 2 U for all i � N . In this case, we write pi ! p or
limi!1 pi D p.

I Exercise A.1. Let F W X ! Y be a map between topological spaces. Prove that
each of the following properties is equivalent to continuity of F :

(a) For every subset A�X , F
�
xA
�
� F.A/.

(b) For every subset B � Y , F�1.IntB/� IntF�1.B/.

I Exercise A.2. Let X , Y , and Z be topological spaces. Show that the following
maps are continuous:

(a) The identity map IdX W X!X , defined by IdX .x/D x for all x 2X .
(b) Any constant map F W X ! Y (i.e., a map such that F.x/ D F.y/ for all

x;y 2X ).
(c) Any composition G ıF of continuous maps F W X! Y and G W Y !Z.

I Exercise A.3. Let X and Y be topological spaces. Suppose F W X! Y is contin-
uous and pi ! p in X . Show that F.pi /! F.p/ in Y .
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The most important examples of topological spaces, from which most of our
examples of manifolds are built in one way or another, are described below.

Example A.4 (Discrete Spaces). If X is an arbitrary set, the discrete topology on
X is the topology defined by declaring every subset of X to be open. Any space that
has the discrete topology is called a discrete space. //

Example A.5 (Metric Spaces). A metric space is a setM endowed with a distance
function (also called a metric) d W M �M ! R (where R denotes the set of real
numbers) satisfying the following properties for all x;y; z 2M :

(i) POSITIVITY: d.x;y/� 0, with equality if and only if x D y.
(ii) SYMMETRY: d.x;y/D d.y;x/.

(iii) TRIANGLE INEQUALITY: d.x; z/� d.x;y/C d.y; z/.

If M is a metric space, x 2M; and r > 0, the open ball of radius r around x is the
set

Br .x/D
˚
y 2M W d.x;y/ < r

�
;

and the closed ball of radius r is

xBr .x/D
˚
y 2M W d.x;y/� r

�
:

The metric topology onM is defined by declaring a subset S �M to be open if for
every point x 2 S , there is some r > 0 such that Br .x/� S . //

If M is a metric space and S is any subset of M; the restriction of the distance
function to pairs of points in S turns S into a metric space and thus also a topological
space. We use the following standard terminology for metric spaces:

� A subset S � M is bounded if there exists a positive number R such that
d.x;y/�R for all x;y 2 S .
� If S is a nonempty bounded subset of M; the diameter of S is the number

diamS D supfd.x;y/ W x;y 2 Sg.
� A sequence of points .xi /1iD1 inM is a Cauchy sequence if for every " > 0, there

exists an integer N such that i; j �N implies d.xi ; xj / < ".
� A metric space M is said to be complete if every Cauchy sequence in M con-

verges to a point of M .

Example A.6 (Euclidean Spaces). For each integer n � 1, the set Rn of ordered
n-tuples of real numbers is called n-dimensional Euclidean space. We denote a
point in Rn by

�
x1; : : : ; xn

�
,
�
xi
�
, or x; the numbers xi are called the components

or coordinates of x. (When n is small, we often use more traditional names such
as .x; y; z/ for the coordinates.) Notice that we write the coordinates of a point�
x1; : : : ; xn

�
2Rn with superscripts, not subscripts as is usually done in linear alge-

bra and calculus books, so as to be consistent with the Einstein summation conven-
tion, explained in Chapter 1. By convention, R0 is the one-element set f0g.

For each x 2Rn, the Euclidean norm of x is the nonnegative real number

jxj D

q�
x1
�2
C � � � C

�
xn
�2
;
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and for x;y 2Rn, the Euclidean distance function is defined by

d.x;y/D jx � yj:

This distance function turns Rn into a complete metric space. The resulting metric
topology on Rn is called the Euclidean topology. //

Example A.7 (Complex Euclidean Spaces). We also sometimes have occasion
to work with complex Euclidean spaces. We consider the set C of complex num-
bers, as a set, to be simply R2, with the complex number x C iy corresponding
to .x; y/ 2 R2. For any positive integer n, the n-dimensional complex Euclidean
space is the set Cn of ordered n-tuples of complex numbers. It becomes a topolog-
ical space when identified with R2n via the correspondence

�
x1C iy1; : : : ; xnC iyn

�
$
�
x1; y1; : : : ; xn; yn

�
: //

Example A.8 (Subsets of Euclidean Spaces). Every subset of Rn or Cn becomes
a metric space, and thus a topological space, when endowed with the Euclidean
metric. Whenever we mention such a subset, it is always assumed to have this metric
topology unless otherwise specified. It is a complete metric space if and only if it is
a closed subset of Rn. Here are some standard subsets of Euclidean spaces that we
work with frequently:

� The unit interval is the subset I �R defined by

I D Œ0; 1�D fx 2R W 0� x � 1g:

� The (open) unit ball of dimension n is the subset Bn �Rn defined by

Bn D
˚
x 2Rn W jxj< 1

�
:

� The closed unit ball of dimension n is the subset xBn �Rn defined by

xBn D
˚
x 2Rn W jxj � 1

�
:

The terms (open) unit disk and closed unit disk are commonly used for B2

and xB2, respectively.
� For n� 0, the (unit) n-sphere is the subset Sn �RnC1 defined by

Sn D
˚
x 2RnC1 W jxj D 1

�
:

Sometimes it is useful to think of an odd-dimensional sphere S2nC1 as a subset
of CnC1, by means of the usual identification of CnC1 with R2nC2.
� The (unit) circle is the 1-sphere S1, considered either as a subset of R2 or as a

subset of C. //

Hausdorff Spaces

Topological spaces allow us to describe a wide variety of concepts of “spaces.” But
for the purposes of manifold theory, arbitrary topological spaces are far too general,
because they can have some unpleasant properties, as the next exercise illustrates.
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I Exercise A.9. Let X be any set. Show that fX;¿g is a topology on X , called the
trivial topology. Show that when X is endowed with this topology, every sequence
in X converges to every point of X , and every map from a topological space into X is
continuous.

To avoid pathological cases like this, which result when X does not have suf-
ficiently many open subsets, we often restrict our attention to topological spaces
satisfying the following special condition. A topological space X is said to be a
Hausdorff space if for every pair of distinct points p;q 2 X , there exist disjoint
open subsets U;V �X such that p 2 U and q 2 V .

I Exercise A.10. Show that every metric space is Hausdorff in the metric topology.

I Exercise A.11. Let X be a Hausdorff space. Show that each finite subset of X is
closed, and that each convergent sequence in X has a unique limit.

Bases and Countability

Suppose X is a topological space. A collection B of open subsets of X is said to be
a basis for the topology of X (plural: bases) if every open subset of X is the union
of some collection of elements of B.

More generally, suppose X is merely a set, and B is a collection of subsets of X
satisfying the following conditions:

(i) X D
S
B2B B .

(ii) If B1;B2 2B and x 2 B1 \ B2, then there exists B3 2B such that x 2 B3 �
B1 \B2.

Then the collection of all unions of elements of B is a topology on X , called the
topology generated by B , and B is a basis for this topology.

If X is a topological space and p 2X , a neighborhood basis at p is a collection
Bp of neighborhoods of p such that every neighborhood of p contains at least one
B 2Bp .

A set is said to be countably infinite if it admits a bijection with the set of positive
integers, and countable if it is finite or countably infinite. A topological space X is
said to be first-countable if there is a countable neighborhood basis at each point,
and second-countable if there is a countable basis for its topology. Since a count-
able basis for X contains a countable neighborhood basis at each point, second-
countability implies first-countability.

The next lemma expresses the most important properties of first-countable
spaces. To say that a sequence is eventually in a subset means that all but finitely
many terms of the sequence are in the subset.

Lemma A.12 (Sequence Lemma). Let X be a first-countable space, let A�X be
any subset, and let x 2X .

(a) x 2 xA if and only if x is a limit of a sequence of points in A.
(b) x 2 IntA if and only if every sequence in X converging to x is eventually in A.
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(c) A is closed in X if and only if A contains every limit of every convergent se-
quence of points in A.

(d) A is open in X if and only if every sequence in X converging to a point of A is
eventually in A.

I Exercise A.13. Prove the sequence lemma.

I Exercise A.14. Show that every metric space is first-countable.

I Exercise A.15. Show that the set of all open balls in Rn whose radii are rational
and whose centers have rational coordinates is a countable basis for the Euclidean
topology, and thus Rn is second-countable.

One of the most important properties of second-countable spaces is expressed in
the following proposition. Let X be a topological space. A cover of X is a collec-
tion U of subsets of X whose union is X ; it is called an open cover if each of the
sets in U is open. A subcover of U is a subcollection of U that is still a cover.

Proposition A.16. Let X be a second-countable topological space. Every open
cover of X has a countable subcover.

Proof. Let B be a countable basis for X , and let U be an arbitrary open cover
of X . Let B 0 �B be the collection of basis open subsets B 2B such that B � U
for some U 2U. For each B 2B 0, choose a particular set UB 2U containing B .
The collection fUB WB 2B 0g is countable, so it suffices to show that it covers X .
Given a point x 2 X , there is some V 2U containing x, and because B is a basis
there exists B 2B such that x 2 B � V . This implies, in particular, that B 2B 0,
and therefore x 2B � UB . �

Subspaces, Products, Disjoint Unions, and Quotients

Subspaces

Probably the simplest way to obtain new topological spaces from old ones is by
taking subsets of other spaces. If X is a topological space and S � X is an arbi-
trary subset, we define the subspace topology on S (sometimes called the relative
topology) by declaring a subset U � S to be open in S if and only if there exists an
open subset V � X such that U D V \ S . A subset of S that is open or closed in
the subspace topology is sometimes said to be relatively open or relatively closed
in S , to make it clear that we do not mean open or closed as a subset of X . Any
subset of X endowed with the subspace topology is said to be a subspace of X .
Whenever we treat a subset of a topological space as a space in its own right, we
always assume that it has the subspace topology unless otherwise specified.

If X and Y are topological spaces, a continuous injective map F W X ! Y is
called a topological embedding if it is a homeomorphism onto its image F.X/� Y
in the subspace topology.

The most important properties of the subspace topology are summarized in the
next proposition.
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Proposition A.17 (Properties of the Subspace Topology). Let X be a topological
space and let S be a subspace of X .

(a) CHARACTERISTIC PROPERTY: If Y is a topological space, a map F W Y ! S is
continuous if and only if the composition �S ı F W Y !X is continuous, where
�S W S ,!X is the inclusion map (the restriction of the identity map of X to S ).

(b) The subspace topology is the unique topology on S for which the characteristic
property holds.

(c) A subset K � S is closed in S if and only if there exists a closed subset L�X
such that K DL\ S .

(d) The inclusion map �S W S ,!X is a topological embedding.
(e) If Y is a topological space and F W X ! Y is continuous, then F jS W S ! Y

(the restriction of F to S ) is continuous.
(f) If B is a basis for the topology of X , then BS D fB \S WB 2Bg is a basis for

the subspace topology on S .
(g) If X is Hausdorff, then so is S .
(h) If X is first-countable, then so is S .
(i) If X is second-countable, then so is S .

I Exercise A.18. Prove the preceding proposition.

IfX and Y are topological spaces and F W X! Y is a continuous map, part (e) of
the preceding proposition guarantees that the restriction of F to every subspace ofX
is continuous (in the subspace topology). We can also ask the converse question: If
we know that the restriction of F to certain subspaces ofX is continuous, is F itself
continuous? The next two propositions express two somewhat different answers to
this question.

Lemma A.19 (Continuity Is Local). Continuity is a local property, in the following
sense: if F W X ! Y is a map between topological spaces such that every point
p 2X has a neighborhood U on which the restriction F jU is continuous, then F is
continuous.

Lemma A.20 (Gluing Lemma for Continuous Maps). Let X and Y be topologi-
cal spaces, and suppose one of the following conditions holds:

(a) B1; : : : ;Bn are finitely many closed subsets of X whose union is X .
(b) fBigi2A is a collection of open subsets of X whose union is X .

Suppose that for all i we are given continuous maps Fi W Bi ! Y that agree on over-
laps: Fi jBi\Bj D Fj jBi\Bj . Then there exists a unique continuous map F W X! Y

whose restriction to each Bi is equal to Fi .

I Exercise A.21. Prove the two preceding lemmas.

I Exercise A.22. Let X be a topological space, and suppose X admits a countable
open cover fUi g such that each set Ui is second-countable in the subspace topology.
Show that X is second-countable.
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Product Spaces

Next we consider finite products of topological spaces. If X1; : : : ;Xk are (finitely
many) sets, their Cartesian product is the set X1�� � ��Xk consisting of all ordered
k-tuples of the form

�
x1; : : : ; xk

�
with xi 2Xi for each i . The i th projection map

is the map �i W X1 � � � � �Xk!Xi defined by �i
�
x1; : : : ; xk

�
D xi .

Suppose X1; : : : ;Xk are topological spaces. The collection of all subsets of X1�
� � � � Xk of the form U1 � � � � � Uk , where each Ui is open in Xi , forms a basis
for a topology on X1 � � � � � Xk , called the product topology. Endowed with this
topology, a finite product of topological spaces is called a product space. Any open
subset of the form U1 � � � � �Uk �X1 � � � � �Xk , where each Ui is open in Xi , is
called a product open subset. (A slightly different definition is required for products
of infinitely many spaces, but we need only the finite case. See [LeeTM] for more
about infinite product spaces.)

Proposition A.23 (Properties of the Product Topology). SupposeX1; : : : ;Xk are
topological spaces, and let X1 � � � � �Xk be their product space.

(a) CHARACTERISTIC PROPERTY: If B is a topological space, a map F W B !
X1 � � � � �Xk is continuous if and only if each of its component functions Fi D
�i ıF W B!Xi is continuous.

(b) The product topology is the unique topology on X1 � � � � � Xk for which the
characteristic property holds.

(c) Each projection map �i W X1 � � � � �Xk!Xi is continuous.
(d) Given any continuous maps Fi W Xi ! Yi for i D 1; : : : ; k, the product map

F1 � � � � �Fk W X1 � � � � �Xk! Y1 � � � � � Yk is continuous, where

F1 � � � � �Fk.x1; : : : ; xk/D
�
F1.x1/; : : : ;Fk.xk/

�
:

(e) If Si is a subspace ofXi for i D 1; : : : ; n, the product topology and the subspace
topology on S1 � � � � � Sn �X1 � � � � �Xn coincide.

(f) For any i 2 f1; : : : ; kg and any choices of points aj 2 Xj for j ¤ i , the map
x 7! .a1; : : : ; ai�1; x; aiC1; : : : ; ak/ is a topological embedding of Xi into the
product space X1 � � � � �Xk .

(g) If Bi is a basis for the topology of Xi for i D 1; : : : ; k, then the collection

B D fB1 � � � � �Bk WBi 2Big

is a basis for the topology of X1 � � � � �Xk .
(h) Every finite product of Hausdorff spaces is Hausdorff.
(i) Every finite product of first-countable spaces is first-countable.
(j) Every finite product of second-countable spaces is second-countable.

I Exercise A.24. Prove the preceding proposition.

Disjoint Union Spaces

Another simple way of building new topological spaces is by taking disjoint unions
of other spaces. From a set-theoretic point of view, the disjoint union is defined as
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follows. If .X˛/˛2A is an indexed family of sets, their disjoint union is the set
a

˛2A

X˛ D
˚
.x;˛/ W ˛ 2A; x 2X˛

�
:

For each ˛, there is a canonical injective map �˛ W X˛!
`
˛2AX˛ given by �˛.x/D

.x;˛/, and the images of these maps for different values of ˛ are disjoint. Typically,
we implicitly identify X˛ with its image in the disjoint union, thereby viewing X˛
as a subset of

`
˛2AX˛ . The ˛ in the notation .x;˛/ should be thought of as a “tag”

to indicate which set x comes from, so that the subsets corresponding to different
values of ˛ are disjoint, even if some or all of the original sets X˛ were identical.

Given an indexed family of topological spaces .X˛/˛2A, we define the disjoint
union topology on

`
˛2AX˛ by declaring a subset of

`
˛2AX˛ to be open if and

only if its intersection with each X˛ is open in X˛ .

Proposition A.25 (Properties of the Disjoint Union Topology). Suppose .X˛/˛2A
is an indexed family of topological spaces, and

`
˛2AX˛ is endowed with the dis-

joint union topology.

(a) CHARACTERISTIC PROPERTY: If Y is a topological space, a map

F W
a

˛2A

X˛! Y

is continuous if and only if F ı �˛ W X˛! Y is continuous for each ˛ 2A.
(b) The disjoint union topology is the unique topology on

`
˛2AX˛ for which the

characteristic property holds.
(c) A subset of

`
˛2AX˛ is closed if and only if its intersection with each X˛ is

closed.
(d) Each injection �˛ W X˛!

`
˛2AX˛ is a topological embedding.

(e) Every disjoint union of Hausdorff spaces is Hausdorff.
(f) Every disjoint union of first-countable spaces is first-countable.
(g) Every disjoint union of countably many second-countable spaces is second-

countable.

I Exercise A.26. Prove the preceding proposition.

Quotient Spaces and Quotient Maps

If X is a topological space, Y is a set, and � W X ! Y is a surjective map, the
quotient topology on Y determined by � is defined by declaring a subset U � Y
to be open if and only if ��1.U / is open in X . If X and Y are topological spaces,
a map � W X ! Y is called a quotient map if it is surjective and continuous and Y
has the quotient topology determined by � .

The following construction is the most common way of producing quotient maps.
A relation 	 on a set X is called an equivalence relation if it is reflexive (x 	 x for
all x 2X ), symmetric (x 	 y implies y 	 x), and transitive (x 	 y and y 	 z imply
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x 	 z). If R �X �X is any relation on X , then the intersection of all equivalence
relations on X containing R is an equivalence relation, called the equivalence rela-
tion generated by R. If 	 is an equivalence relation on X , then for each x 2X , the
equivalence class of x, denoted by Œx�, is the set of all y 2X such that y 	 x. The
set of all equivalence classes is a partition of X : a collection of disjoint nonempty
subsets whose union is X .

Suppose X is a topological space and 	 is an equivalence relation on X . Let
X=	 denote the set of equivalence classes in X , and let � W X!X=	 be the natu-
ral projection sending each point to its equivalence class. Endowed with the quotient
topology determined by � , the space X=	 is called the quotient space (or identi-
fication space) of X determined by �. For example, suppose X and Y are topo-
logical spaces, A� Y is a closed subset, and f W A!X is a continuous map. The
relation a	 f .a/ for all a 2A generates an equivalence relation on X q Y , whose
quotient space is denoted by X [f Y and called an adjunction space. It is said to
be formed by attaching Y to X along f .

If � W X! Y is a map, a subset U �X is said to be saturated with respect to �
if U is the entire preimage of its image: U D ��1

�
�.U /

�
. Given y 2 Y , the fiber

of � over y is the set ��1.y/. Thus, a subset of X is saturated if and only if it is a
union of fibers.

Theorem A.27 (Properties of Quotient Maps). Let � W X ! Y be a quotient
map.

(a) CHARACTERISTIC PROPERTY: If B is a topological space, a map F W Y ! B

is continuous if and only if F ı � W X!B is continuous.
(b) The quotient topology is the unique topology on Y for which the characteristic

property holds.
(c) A subset K � Y is closed if and only if ��1.K/ is closed in X .
(d) If � is injective, then it is a homeomorphism.
(e) If U �X is a saturated open or closed subset, then the restriction �jU W U !

�.U / is a quotient map.
(f) Any composition of � with another quotient map is again a quotient map.

I Exercise A.28. Prove the preceding theorem.

I Exercise A.29. Let X and Y be topological spaces, and suppose that F W X ! Y

is a surjective continuous map. Show that the following are equivalent:

(a) F is a quotient map.
(b) F takes saturated open subsets to open subsets.
(c) F takes saturated closed subsets to closed subsets.

The next two properties of quotient maps play important roles in topology, and have
equally important generalizations in smooth manifold theory (see Chapter 4).

Theorem A.30 (Passing to the Quotient). Suppose � W X ! Y is a quotient map,
B is a topological space, and F W X ! B is a continuous map that is constant on
the fibers of � (i.e., �.p/D �.q/ implies F.p/D F.q/). Then there exists a unique
continuous map zF W Y !B such that F D zF ı � .
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Proof. The existence and uniqueness of zF follow from set-theoretic considerations,
and its continuity is an immediate consequence of the characteristic property of the
quotient topology. �

Theorem A.31 (Uniqueness of Quotient Spaces). If �1 W X ! Y1 and �2 W X !
Y2 are quotient maps that are constant on each other’s fibers (i.e., �1.p/D �1.q/ if
and only if �2.p/D �2.q/), then there exists a unique homeomorphism ' W Y1! Y2
such that ' ı �1 D �2.

Proof. Applying the preceding theorem to the quotient map �1 W X ! Y1, we see
that �2 passes to the quotient, yielding a continuous map z�2 W Y1! Y2 satisfying
z�2 ı �1 D �2. Applying the same argument with the roles of �1 and �2 reversed,
there is a continuous map z�1 W Y2! Y1 satisfying z�1 ı �2 D �1. Together, these
identities imply that z�2 ı z�1 ı �2 D �2. Applying Theorem A.30 again with �2
playing the roles of both � and F , we see that both z�2 ı z�1 and IdY2 are obtained
from �2 by passing to the quotient, so the uniqueness assertion of Theorem A.30
implies that z�2 ı z�1 D IdY2 . A similar argument shows that z�1 ı z�2 D IdY1 , so that
z�2 is the desired homeomorphism. �

Open and Closed Maps

A map F W X ! Y (continuous or not) is said to be an open map if for every open
subsetU �X , the image set F.U / is open in Y , and a closed map if for every closed
subset K � X , the image F.K/ is closed in Y . Continuous maps may be open,
closed, both, or neither, as can be seen by examining simple examples involving
subsets of the plane.

I Exercise A.32. Suppose X1; : : : ;Xk are topological spaces. Show that each pro-
jection �i W X1 � � � � �Xk!Xi is an open map.

I Exercise A.33. Let .X˛/˛2A be an indexed family of topological spaces. Show
that each injection �˛ W X˛!

`
˛2AX˛ is both open and closed.

I Exercise A.34. Show that every local homeomorphism is an open map.

I Exercise A.35. Show that every bijective local homeomorphism is a homeomor-
phism.

I Exercise A.36. Suppose q W X ! Y is an open quotient map. Prove that Y is
Hausdorff if and only if the set RD f.x1; x2/ W q.x1/D q.x2/g is closed in X �X .

I Exercise A.37. Let X and Y be topological spaces, and let F W X! Y be a map.
Prove the following:

(a) F is closed if and only if for every A�X , F
�
xA
�

 F.A/.

(b) F is open if and only if for every B � Y , F�1.IntB/
 IntF�1.B/.

The most important classes of continuous maps in topology are the homeomor-
phisms, quotient maps, and topological embeddings. Obviously, it is necessary for
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a map to be bijective in order for it to be a homeomorphism, surjective for it to be
a quotient map, and injective for it to be a topological embedding. However, even
when a continuous map is known to satisfy one of these necessary set-theoretic con-
ditions, it is not always easy to tell whether it has the desired topological property.
One simple sufficient condition is that it be either an open or a closed map, as the
next theorem shows.

Theorem A.38. Suppose X and Y are topological spaces, and F W X ! Y is a
continuous map that is either open or closed.

(a) If F is surjective, then it is a quotient map.
(b) If F is injective, then it is a topological embedding.
(c) If F is bijective, then it is a homeomorphism.

Proof. Suppose first that F is surjective. If it is open, it certainly takes saturated
open subsets to open subsets. Similarly, if it is closed, it takes saturated closed sub-
sets to closed subsets. Thus it is a quotient map by Exercise A.29.

Now suppose F is open and injective. Then F W X ! F.X/ is bijective, so
F �1 W F.X/! X exists by elementary set-theoretic considerations. If U � X is
open, then

�
F �1

�
�1.U /D F.U / is open in Y by hypothesis, and therefore is also

open in F.X/ by definition of the subspace topology on F.X/. This proves that
F �1 is continuous, so that F is a homeomorphism onto its image. If F is closed,
the same argument goes through with “open” replaced by “closed” (using the char-
acterization of closed subsets of F.X/ given in Proposition A.17(c)). This proves
part (b), and part (c) is just the special case of (b) in which F.X/D Y . �

Connectedness and Compactness

A topological space X is said to be disconnected if it has two disjoint nonempty
open subsets whose union is X , and it is connected otherwise. Equivalently, X is
connected if and only if the only subsets of X that are both open and closed are ¿
and X itself. If X is any topological space, a connected subset of X is a subset
that is a connected space when endowed with the subspace topology. For example,
the nonempty connected subsets of R are the singletons (one-element sets) and
the intervals, which are the subsets J � R containing more than one point and
having the property that whenever a; b 2 J and a < c < b, it follows that c 2 J as
well.

A maximal connected subset of X (i.e., a connected subset that is not properly
contained in any larger connected subset) is called a component (or connected com-
ponent) of X .

Proposition A.39 (Properties of Connected Spaces). Let X and Y be topological
spaces.

(a) If F W X! Y is continuous and X is connected, then F.X/ is connected.
(b) Every connected subset of X is contained in a single component of X .
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(c) A union of connected subspaces of X with a point in common is connected.
(d) The components of X are disjoint nonempty closed subsets whose union is X ,

and thus they form a partition of X .
(e) If S is a subset of X that is both open and closed, then S is a union of compo-

nents of X .
(f) Every finite product of connected spaces is connected.
(g) Every quotient space of a connected space is connected.

I Exercise A.40. Prove the preceding proposition.

Closely related to connectedness is path connectedness. If X is a topological
space and p;q 2 X , a path in X from p to q is a continuous map f W I ! X

(where I D Œ0; 1�) such that f .0/ D p and f .1/ D q. If for every pair of points
p;q 2X there exists a path in X from p to q, then X is said to be path-connected.
The path components of X are its maximal path-connected subsets.

Proposition A.41 (Properties of Path-Connected Spaces).

(a) Proposition A.39 holds with “connected” replaced by “path-connected” and
“component” by “path component” throughout.

(b) Every path-connected space is connected.

I Exercise A.42. Prove the preceding proposition.

For most topological spaces we treat in this book, including all manifolds, con-
nectedness and path connectedness turn out to be equivalent. The link between the
two concepts is provided by the following notion. A topological space is said to be
locally path-connected if it admits a basis of path-connected open subsets.

Proposition A.43 (Properties of Locally Path-Connected Spaces). Let X be a
locally path-connected topological space.

(a) The components of X are open in X .
(b) The path components of X are equal to its components.
(c) X is connected if and only if it is path-connected.
(d) Every open subset of X is locally path-connected.

I Exercise A.44. Prove the preceding proposition.

A topological space X is said to be compact if every open cover of X has a finite
subcover. A compact subset of a topological space is one that is a compact space in
the subspace topology. For example, it is a consequence of the Heine–Borel theorem
that a subset of Rn is compact if and only if it is closed and bounded.

Proposition A.45 (Properties of Compact Spaces). Let X and Y be topological
spaces.

(a) If F W X! Y is continuous and X is compact, then F.X/ is compact.
(b) If X is compact and f W X ! R is continuous, then f is bounded and attains

its maximum and minimum values on X .
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(c) Any union of finitely many compact subspaces of X is compact.
(d) If X is Hausdorff and K and L are disjoint compact subsets of X , then there

exist disjoint open subsets U;V �X such that K � U and L� V .
(e) Every closed subset of a compact space is compact.
(f) Every compact subset of a Hausdorff space is closed.
(g) Every compact subset of a metric space is bounded.
(h) Every finite product of compact spaces is compact.
(i) Every quotient of a compact space is compact.

I Exercise A.46. Prove the preceding proposition.

For maps between metric spaces, there are several variants of continuity that are
useful, especially in the context of compact spaces. Suppose .M1; d1/ and .M2; d2/

are metric spaces, and F W M1!M2 is a map. Then F is said to be uniformly con-
tinuous if for every " > 0, there exists ı > 0 such that for all x;y 2M1, d1.x; y/ < ı
implies d2

�
F.x/;F.y/

�
< ". It is said to be Lipschitz continuous if there is a con-

stant C such that d2
�
F.x/;F.y/

�
� Cd1.x; y/ for all x;y 2M1. Any such C is

called a Lipschitz constant for F . We say that F is locally Lipschitz continuous
if every point x 2M1 has a neighborhood on which F is Lipschitz continuous.
(To emphasize the distinction, Lipschitz continuous functions are sometimes called
uniformly or globally Lipschitz continuous.)

I Exercise A.47. For maps between metric spaces, show that Lipschitz continuous
) uniformly continuous) continuous, and Lipschitz continuous) locally Lipschitz
continuous) continuous. (Exercise A.49 below shows that these implications are not
reversible.)

Proposition A.48. Suppose .M1; d1/ and .M2; d2/ are metric spaces and F W M1!

M2 is a map. Let K be any compact subset of M1.

(a) If F is continuous, then F jK is uniformly continuous.
(b) If F is locally Lipschitz continuous, then F jK is Lipschitz continuous.

Proof. First we prove (a). Assume F is continuous, and let " > 0 be given. For
each x 2 K , by continuity there is a positive number ı.x/ such that d1.x; y/ <
2ı) d2

�
F.x/;F.y/

�
< "=2. Because the open balls fBı.x/.x/ W x 2Kg cover K ,

by compactness there are finitely many points x1; : : : ; xn 2 K such that K �
Bı.x1/.x1/ [ � � � [ Bı.xn/.xn/. Let ı D minfı.x1/; : : : ; ı.xn/g. Suppose x;y 2 K
satisfy d1.x; y/ < ı. There is some i such that x 2Bı.xi /.xi /, and then the triangle
inequality implies that x and y both lie in B2ı.xi /.xi /. It follows that

d2
�
F.x/;F.y/

�
� d2

�
F.x/;F.xi /

�
C d2

�
F.xi /;F.y/

�
< "=2C "=2D ":

Next we prove (b). Assume F is locally Lipschitz continuous. Because F is
continuous, Proposition A.45 shows that F.K/ is compact and therefore bounded.
Let D D diamF.K/. For each x 2K , there is a positive number ı.x/ such that F
is Lipschitz continuous on B2ı.x/.x/, with Lipschitz constant C.x/. By compact-
ness, there are points x1; : : : ; xn 2K such that K � Bı.x1/.x1/[ � � � [Bı.xn/.xn/.
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Let C DmaxfC.x1/; : : : ;C.xn/g and ı Dminfı.x1/; : : : ; ı.xn/g, and let x;y 2K
be arbitrary. On the one hand, if d1.x; y/ < ı, then by the same argument as in
the preceding paragraph, x and y lie in one of the balls on which F is Lipschitz
continuous, so d2

�
F.x/;F.y/

�
� Cd1.x; y/. On the other hand, if d1.x; y/ � ı,

then d2
�
F.x/;F.y/

�
� D � .D=ı/d1.x; y/. Therefore, maxfC;D=ıg is a Lips-

chitz constant for F on K . �

I Exercise A.49. Let f;g W Œ0;1/!R be defined by f .x/D
p
x and g.x/D x2.

Show that f is uniformly continuous but not locally or globally Lipschitz continu-
ous, and g is locally Lipschitz continuous but not uniformly continuous or globally
Lipschitz continuous.

For manifolds, subsets of manifolds, and most other spaces we work with, there
are two other equivalent formulations of compactness that are frequently useful.
Proofs of the next proposition can be found in [LeeTM, Chap. 4], [Mun00, Chap. 3],
and [Sie92, Chap. 7].

Proposition A.50 (Equivalent Formulations of Compactness). Suppose M is a
second-countable Hausdorff space or a metric space. The following are equivalent.

(a) M is compact.
(b) Every infinite subset of M has a limit point in M .
(c) Every sequence in M has a convergent subsequence in M .

I Exercise A.51. Show that every compact metric space is complete.

The next lemma expresses one of the most useful properties of compact spaces.

Lemma A.52 (Closed Map Lemma). SupposeX is a compact space, Y is a Haus-
dorff space, and F W X! Y is a continuous map.

(a) F is a closed map.
(b) If F is surjective, it is a quotient map.
(c) If F is injective, it is a topological embedding.
(d) If F is bijective, it is a homeomorphism.

Proof. By virtue of Theorem A.38, the last three assertions follow from the first,
so we need only prove that F is closed. Suppose K � X is a closed subset. Then
part (e) of Proposition A.45 implies that K is compact; part (a) of that proposition
implies that F.K/ is compact; and part (f) implies that F.K/ is closed in Y . �

If X and Y are topological spaces, a map F W X! Y (continuous or not) is said
to be proper if for every compact set K � Y , the preimage F �1.K/ is compact.
Here are some useful sufficient conditions for a map to be proper.

Proposition A.53 (Sufficient Conditions for Properness). Suppose X and Y are
topological spaces, and F W X! Y is a continuous map.

(a) If X is compact and Y is Hausdorff, then F is proper.
(b) If F is a closed map with compact fibers, then F is proper.
(c) If F is a topological embedding with closed image, then F is proper.
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(d) If Y is Hausdorff and F has a continuous left inverse (i.e., a continuous map
G W Y !X such that G ı F D IdX ), then F is proper.

(e) If F is proper and A� X is a subset that is saturated with respect to F , then
F jA W A! F.A/ is proper.

I Exercise A.54. Prove the preceding proposition.

Locally Compact Hausdorff Spaces

In general, the topological spaces whose properties are most familiar are those
whose topologies are induced by metrics; such a topological space is said to be
metrizable. However, when studying manifolds, it is often quite inconvenient to ex-
hibit a metric that generates a manifold’s topology. Fortunately, as shown in Chap-
ter 1, manifolds belong to another class of spaces with similarly nice properties, the
locally compact Hausdorff spaces. In this section, we review some of the properties
of these spaces.

A topological space X is said to be locally compact if every point has a neigh-
borhood contained in a compact subset of X . If X is Hausdorff, this property has
two equivalent formulations that are often more useful, as the next exercise shows.
A subset of X is said to be precompact in X if its closure in X is compact.

I Exercise A.55. For a Hausdorff space X , show that the following are equivalent:

(a) X is locally compact.
(b) Each point of X has a precompact neighborhood.
(c) X has a basis of precompact open subsets.

I Exercise A.56. Prove that every open or closed subspace of a locally compact
Hausdorff space is itself a locally compact Hausdorff space.

The next result can be viewed as a generalization of the closed map lemma
(Lemma A.52).

Theorem A.57 (Proper Continuous Maps Are Closed). Suppose X is a topolog-
ical space and Y is a locally compact Hausdorff space. Then every proper continu-
ous map F W X! Y is closed.

Proof. Let K �X be a closed subset. To show that F.K/ is closed in Y , we show
that it contains all of its limit points. Let y be a limit point of F.K/, and let U be
a precompact neighborhood of y. Then y is also a limit point of F.K/ \ xU . Be-
cause F is proper, F �1

�
xU
�

is compact, which implies thatK\F �1
�
xU
�

is compact.
Because F is continuous, F

�
K \F �1

�
xU
��
D F.K/\ xU is compact and therefore

closed in Y . In particular, y 2 F.K/\ xU � F.K/, so F.K/ is closed. �
Here is an important property of locally compact Hausdorff spaces, which is also

shared by complete metric spaces. For a proof, see [LeeTM, Chap. 4].

Theorem A.58 (Baire Category Theorem). In a locally compact Hausdorff space
or a complete metric space, every countable union of nowhere dense sets has empty
interior.
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Corollary A.59. In a locally compact Hausdorff space or a complete metric space,
every nonempty countable closed subset contains at least one isolated point.

Proof. Assume X is such a space. Let A � X be a nonempty countable closed
subset, and assume that A has no isolated points. The fact that A is closed in X
means that A itself is either a locally compact Hausdorff space or a complete metric
space. For each a 2 A, the singleton fag is nowhere dense in A: it is closed in A
because A is Hausdorff, and it contains no nonempty open subset because A has
no isolated points. Since A is a countable union of singletons, the Baire category
theorem implies that A has empty interior in A, which is a contradiction. �

If we add the hypothesis of second-countability to a locally compact Hausdorff
space, we can prove even more. A sequence .Ki /1iD1 of compact subsets of a topo-
logical space X is called an exhaustion of X by compact sets if X D

S
i Ki and

Ki � IntKiC1 for each i .

Proposition A.60. A second-countable, locally compact Hausdorff space admits an
exhaustion by compact sets.

Proof. Let X be such a space. Because X is a locally compact Hausdorff space,
it has a basis of precompact open subsets; since it is second-countable, it is cov-
ered by countably many such sets. Let .Ui /1iD1 be such a countable cover. Be-
ginning with K1 D xU1, assume by induction that we have constructed compact
sets K1; : : : ;Kk satisfying Uj �Kj for each j and Kj�1 � IntKj for j � 2. Be-
cause Kk is compact, there is some mk such that Kk � U1 [ � � � [ Umk . If we let
KkC1 D xU1 [ � � � [ xUmk , then KkC1 is a compact set whose interior contains Kk .
Moreover, by increasing mk if necessary, we may assume that mk � k C 1, so that
UkC1 �KkC1. By induction, we obtain the required exhaustion. �

Homotopy and the Fundamental Group

If X and Y are topological spaces and F0;F1 W X ! Y are continuous maps, a
homotopy from F 0 to F 1 is a continuous map H W X � I ! Y satisfying

H.x;0/D F0.x/;

H.x; 1/D F1.x/;

for all x 2X . If there exists a homotopy from F0 to F1, we say that F 0 and F 1 are
homotopic, and write F0 ' F1. If the homotopy satisfies H.x; t/D F0.x/D F1.x/
for all t 2 I and all x in some subset A � X , the maps F0 and F1 are said to
be homotopic relative to A. Both “homotopic” and “homotopic relative to A” are
equivalence relations on the set of all continuous maps from X to Y .

The most important application of homotopies is to paths. Suppose X is a topo-
logical space. Two paths f0; f1 W I ! X are said to be path-homotopic, denoted
symbolically by f0 	 f1, if they are homotopic relative to f0; 1g. Explicitly, this
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means that there is a continuous map H W I � I !X satisfying

H.s; 0/D f0.s/; s 2 I I

H.s; 1/D f1.s/; s 2 I I

H.0; t/D f0.0/D f1.0/; t 2 I I

H.1; t/D f0.1/D f1.1/; t 2 I:

For any given points p;q 2X , path homotopy is an equivalence relation on the set
of all paths from p to q. The equivalence class of a path f is called its path class,
and is denoted by Œf �.

Given two paths f;g W I ! X such that f .1/D g.0/, their product is the path
f � g W I !X defined by

f � g.s/D

(
f .2s/; 0� s � 1

2
I

g.2s � 1/; 1
2
� s � 1:

If f 	 f 0 and g 	 g0, it is not hard to show that f � g 	 f 0 � g0. Therefore, it
makes sense to define the product of the path classes Œf � and Œg� by Œf � � Œg� D
Œf � g�. Although multiplication of paths is not associative, it is associative up to
path homotopy: .Œf � � Œg�/ � Œh�D Œf � � .Œg� � Œh�/. When we need to consider products
of three or more actual paths (as opposed to path classes), we adopt the convention
that such products are to be evaluated from left to right: f � g � hD .f � g/ � h.

If X is a topological space and q is a point in X , a loop in X based at q is a path
in X from q to q, that is, a continuous map f W I !X such that f .0/D f .1/D q.
The set of path classes of loops based at q is denoted by �1.X; q/. Equipped with
the product described above, it is a group, called the fundamental group of X
based at q. The identity element of this group is the path class of the constant
path cq.s/� q, and the inverse of Œf � is the path class of the reverse path xf .s/D
f .1� s/.

It can be shown that for path-connected spaces, the fundamental groups based at
different points are isomorphic. If X is path-connected and for some (hence every)
q 2X , the fundamental group �1.X; q/ is the trivial group consisting of Œcq� alone,
we say that X is simply connected. This means that every loop is path-homotopic
to a constant path.

I Exercise A.61. Let X be a path-connected topological space. Show that X is sim-
ply connected if and only if every pair of paths in X with the same starting and ending
points are path-homotopic.

A key feature of the homotopy relation is that it is preserved by composition, as
the next proposition shows.

Proposition A.62. If F0;F1 W X ! Y and G0;G1 W Y ! Z are continuous maps
with F0 ' F1 and G0 'G1, then G0 ı F0 'G1 ı F1. Similarly, if f0; f1 W I !X

are path-homotopic and F W X! Y is a continuous map, then F ı f0 	 F ı f1.

I Exercise A.63. Prove the preceding proposition.
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Thus if F W X! Y is a continuous map, for each q 2X we obtain a well-defined
map F� W �1.X; q/! �1

�
Y;F.q/

�
by setting

F�Œf �D ŒF ı f �:

Proposition A.64. If X and Y are topological spaces and F W X ! Y is a contin-
uous map, then F� W �1.X; q/! �1

�
Y;F.q/

�
is a group homomorphism, known as

the homomorphism induced by F .

Proposition A.65 (Properties of the Induced Homomorphism).

(a) Let F W X ! Y and G W Y ! Z be continuous maps. Then for each q 2 X ,
.G ıF /� DG� ıF� W �1.X; q/! �1

�
Z;G.F.q//

�
.

(b) For each space X and each q 2X , the homomorphism induced by the identity
map IdX W X!X is the identity map of �1.X; q/.

(c) If F W X ! Y is a homeomorphism, then F� W �1.X; q/ ! �1
�
Y;F.q/

�
is

an isomorphism. Thus, homeomorphic spaces have isomorphic fundamental
groups.

I Exercise A.66. Prove the two preceding propositions.

I Exercise A.67. A subset U �Rn is said to be star-shaped if there is a point c 2U
such that for each x 2 U , the line segment from c to x is contained in U . Show that
every star-shaped set is simply connected.

Proposition A.68 (Fundamental Groups of Spheres).

(a) �1
�
S1; .1; 0/

�
is the infinite cyclic group generated by the path class of the loop

! W I ! S1 given by !.s/D .cos2�s; sin2�s/.
(b) If n > 1, Sn is simply connected.

Proposition A.69 (Fundamental Groups of Product Spaces). SupposeX1; : : : ;Xk
are topological spaces, and let pi W X1 � � � � �Xk ! Xi denote the i th projection
map. For any points qi 2Xi , i D 1; : : : ; k, define a map

P W �1
�
X1 � � � � �Xk ; .q1; : : : ; qk/

�
! �1.X1; q1/� � � � � �1.Xk ; qk/

by

P Œf �D
�
p1�Œf �; : : : ; pk�Œf �

�
:

Then P is an isomorphism.

I Exercise A.70. Prove the two preceding propositions.

A continuous map F W X! Y between topological spaces is said to be a homo-
topy equivalence if there is a continuous map G W Y ! X such that F ıG ' IdY
and G ıF ' IdX . Such a map G is called a homotopy inverse for F . If there exists
a homotopy equivalence between X and Y , the two spaces are said to be homo-
topy equivalent. For example, the inclusion map � W Sn�1 ,! Rn X f0g is a homo-
topy equivalence with homotopy inverse r.x/D x=jxj, because r ı �D IdSn�1 and
� ı r is homotopic to the identity map of Rn X f0g via the straight-line homotopy
H.x; t/D txC .1� t/x=jxj.
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Theorem A.71 (Homotopy Invariance). If F W X! Y is a homotopy equivalence,
then for each p 2X , F� W �1.X;p/! �1

�
Y;F.p/

�
is an isomorphism.

For a proof, see any of the topology texts mentioned at the beginning of this
appendix.

Covering Maps

Suppose E and X are topological spaces. A map � W E ! X is called a covering
map if E and X are connected and locally path-connected, � is surjective and con-
tinuous, and each point p 2 X has a neighborhood U that is evenly covered by � ,
meaning that each component of ��1.U / is mapped homeomorphically onto U
by � . In this case, X is called the base of the covering, and E is called a covering
space of X . If U is an evenly covered subset of X , the components of ��1.U / are
called the sheets of the covering over U .

Some immediate consequences of the definition should be noted. First, it follows
from Proposition A.43 that E and X are actually path-connected. Second, suppose
U � X is any evenly covered open subset. Because ��1.U / is open in E , it is lo-
cally path-connected, and therefore its components are open subsets of ��1.U / and
thus also of E . Because U is the homeomorphic image of any one of the compo-
nents of ��1.U /, each of which is path-connected, it follows that evenly covered
open subsets are path-connected.

I Exercise A.72. Show that every covering map is a local homeomorphism, an open
map, and a quotient map.

I Exercise A.73. Show that an injective covering map is a homeomorphism.

I Exercise A.74. Show that all fibers of a covering map have the same cardinality,
called the number of sheets of the covering.

I Exercise A.75. Show that a covering map is a proper map if and only if it is finite-
sheeted.

I Exercise A.76. Show that every finite product of covering maps is a covering map.

The main properties of covering maps that we need are summarized in the next
four propositions. For proofs, you can consult [LeeTM, Chaps. 11 and 12], [Mun00,
Chaps. 9 and 13], or [Sie92, Chap. 14].

If � W E!X is a covering map and F W B!X is a continuous map, a lift of F
is a continuous map zF W B!E such that � ı zF D F :

E

B
F
�

zF

�

X:

�
�
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Proposition A.77 (Lifting Properties of Covering Maps). Suppose � W E!X is
a covering map.

(a) UNIQUE LIFTING PROPERTY: If B is a connected space and F W B! X is a
continuous map, then any two lifts of F that agree at one point are identical.

(b) PATH LIFTING PROPERTY: If f W I ! X is a path, then for any point e 2 E
such that �.e/ D f .0/, there exists a unique lift zfe W I ! E of f such that
zf .0/D e.

(c) MONODROMY THEOREM: If f;g W I ! X are path-homotopic paths and
zfe; zge W I ! E are their lifts starting at the same point e 2 E , then zfe and
zge are path-homotopic and zfe.1/D zge.1/.

Proposition A.78 (Lifting Criterion). Suppose � W E!X is a covering map, Y is
a connected and locally path-connected space, and F W Y !X is a continuous map.
Let y 2 Y and e 2E be such that �.e/D F.y/. Then there exists a lift zF W Y !E

of F satisfying zF .y/D e if and only if F�
�
�1.Y;y/

�
� ��

�
�1.E; e/

�
.

Proposition A.79 (Coverings of Simply Connected Spaces). IfX is a simply con-
nected space, then every covering map � W E!X is a homeomorphism.

A topological space is said to be locally simply connected if it admits a basis of
simply connected open subsets.

Proposition A.80 (Existence of a Universal Covering Space). IfX is a connected
and locally simply connected topological space, there exists a simply connected
topological space zX and a covering map � W zX ! X . If y� W yX ! X is any other
simply connected covering of X , there is a homeomorphism ' W zX ! yX such that
y� ı ' D � .

The simply connected covering space zX whose existence and uniqueness (up to
homeomorphism) are guaranteed by this proposition is called the universal covering
space of X .



Appendix B
Review of Linear Algebra

For the basic properties of vector spaces and linear maps, you can consult almost
any linear algebra book that treats vector spaces abstractly, such as [FIS03]. Here
we just summarize the main points, with emphasis on those aspects that are most
important for the study of smooth manifolds.

Vector Spaces

Let R denote the field of real numbers. A vector space over R (or real vector space)
is a set V endowed with two operations: vector addition V � V ! V , denoted by
.v;w/ 7! v C w, and scalar multiplication R � V ! V , denoted by .a; v/ 7! av,
satisfying the following properties:

(i) V is an abelian group under vector addition.
(ii) Scalar multiplication satisfies the following identities:

a.bv/D .ab/v for all v 2 V and a; b 2RI

1vD v for all v 2 V:

(iii) Scalar multiplication and vector addition are related by the following distribu-
tive laws:

.aC b/vD avC bv for all v 2 V and a; b 2RI

a.vCw/D avC aw for all v;w 2 V and a 2R:

This definition can be generalized in two directions. First, replacing R by an
arbitrary field F everywhere, we obtain the definition of a vector space over F . In
particular, we sometimes have occasion to consider vector spaces over C, called
complex vector spaces. Unless we specify otherwise, all vector spaces are assumed
to be real.

Second, if R is replaced by a commutative ring R, this becomes the definition
of a module over R (or R-module). For example, if Z denotes the ring of integers,
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it is straightforward to check that modules over Z are just abelian groups under
addition.

The elements of a vector space are usually called vectors. When it is necessary to
distinguish them from vectors, elements of the underlying field (which is R unless
otherwise specified) are called scalars.

Let V be a vector space. A subset W � V that is closed under vector addition
and scalar multiplication is itself a vector space with the same operations, and is
called a subspace of V . To avoid confusion with the use of the word “subspace”
in topology, we sometimes use the term linear subspace for a subspace of a vector
space in this sense, and topological subspace for a subset of a topological space
endowed with the subspace topology.

A finite sum of the form
Pk
iD1 a

ivi , where ai are scalars and vi 2 V , is called
a linear combination of the vectors v1; : : : ; vk. (The reason we write the coeffi-
cients ai with superscripts instead of subscripts is to be consistent with the Einstein
summation convention, explained in Chapter 1.) If S is an arbitrary subset of V ,
the set of all linear combinations of elements of S is called the span of S and is
denoted by span.S/; it is easily seen to be the smallest subspace of V containing S .
If V D span.S/, we say that S spans V . By convention, a linear combination of no
elements is considered to sum to zero, and the span of the empty set is f0g.

If p and q are points of V , the line segment from p to q is the set f.1� t/pC tq W
0 � t � 1g. A subset B � V is said to be convex if for every two points p;q 2 B ,
the line segment from p to q is contained in B .

Bases and Dimension

Suppose V is a vector space. A subset S � V is said to be linearly dependent
if there exists a linear relation of the form

Pk
iD1 a

ivi D 0, where v1; : : : ; vk are
distinct elements of S and at least one of the coefficients ai is nonzero; S is said to
be linearly independent otherwise. In other words, S is linearly independent if and
only if the only linear combination of distinct elements of S that sums to zero is the
one in which all the scalar coefficients are zero. Note that every set containing the
zero vector is linearly dependent. By convention, the empty set is considered to be
linearly independent.

It is frequently important to work with ordered k-tuples of vectors in V ; such
a k-tuple is denoted by .v1; : : : ; vk/ or .vi /, with parentheses instead of braces to
distinguish it from the (unordered) set of elements fv1; : : : ; vkg. When we consider
ordered k-tuples, linear dependence takes on a slightly different meaning. We say
that .v1; : : : ; vk/ is a linearly dependent k-tuple if there are scalars .a1; : : : ; ak/,
not all zero, such that

Pk
iD1 a

ivi D 0; it is a linearly independent k-tuple oth-
erwise. The only difference between a linearly independent set and a linearly in-
dependent k-tuple is that the latter cannot have repeated vectors. For example if
v 2 V is a nonzero vector, the ordered pair .v; v/ is linearly dependent, while the
set fv; vg D fvg is linearly independent. On the other hand, if .v1; : : : ; vk/ is any
linearly independent k-tuple, then the set fv1; : : : ; vkg is also linearly independent.
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I Exercise B.1. Let V be a vector space. Prove the following statements.

(a) If S � V is linearly independent, then every subset of S is linearly independent.
(b) If S � V is linearly dependent or spans V , then every subset of V that properly

contains S is linearly dependent.
(c) A subset S � V containing more than one element is linearly dependent if and

only if some element v 2 S can be expressed as a linear combination of elements
of S X fvg.

(d) If .v1; : : : ; vk/ is a linearly dependent k-tuple in V with v1 ¤ 0, then some vi can
be expressed as a linear combination of the preceding vectors .v1; : : : ; vi�1/.

A basis for V (plural: bases) is a subset S � V that is linearly independent and
spans V . If S is a basis for V , every element of V has a unique expression as
a linear combination of elements of S . If V has a finite basis, then V is said to
be finite-dimensional, and otherwise it is infinite-dimensional. The trivial vector
space f0g is finite-dimensional, because it has the empty set as a basis.

If V is finite-dimensional, an ordered basis for V is a basis endowed with a
specific ordering of the basis vectors, or equivalently a linearly independent n-tuple
.Ei / that spans V . For most purposes, ordered bases are more useful than unordered
bases, so we always assume, often without comment, that each basis comes with a
given ordering.

If .E1; : : : ;En/ is an (ordered) basis for V , each vector v 2 V has a unique
expression as a linear combination of basis vectors:

vD

nX

iD1

viEi :

The numbers vi are called the components of v with respect to this basis, and the
ordered n-tuple

�
v1; : : : ; vn

�
is called its basis representation. (Here is an example

of a definition that requires an ordered basis.)

Lemma B.2. Let V be a vector space. If V is spanned by a set of n vectors, then
every subset of V containing more than n vectors is linearly dependent.

Proof. Suppose fv1; : : : ; vng is an n-element set that spans V . To prove the lemma,
it suffices to show that every set containing exactly nC 1 vectors is linearly depen-
dent. Let fw1; : : : ;wnC1g be such a set. If any of the wi ’s is zero, then clearly the set
is dependent, so we might as well assume they are all nonzero. By Exercise B.1(b),
the set fw1; v1; : : : ; vng is linearly dependent, and thus so is the ordered .nC1/-tuple
.w1; v1; : : : ; vn/. By Exercise B.1(d), one of the vectors vj can be written as a linear
combination of fw1; v1; : : : ; vj�1g, and thus the set fw1; v1; : : : ; vj�1; vjC1; : : : ; vng
still spans V . Renumbering the vi ’s if necessary, we may assume that the set
fw1; v2; : : : ; vng spans V .

Now suppose by induction that fw1;w2; : : : ;wk�1; vk; : : : ; vng spans V . As be-
fore, the .nC 1/-tuple .w1;w2; : : : ;wk�1;wk ; vk; : : : ; vn/ is linearly dependent, so
one of the vectors in this list can be written as a linear combination of the preceding
ones. If one of the wi ’s can be so written, then the set fw1; : : : ;wnC1g is dependent
and we are done. Otherwise, one of the vj ’s can be so written, and after reordering
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we may assume that fw1;w2; : : : ;wk; vkC1; : : : ; vng still spans V . Continuing by
induction, by the time we get to k D n, if we have not already shown that the wi ’s
are dependent, we conclude that the set fw1; : : : ;wng spans V . But this means that
the set fw1; : : : ;wnC1g is linearly dependent by Exercise B.1(b). �

Proposition B.3. If V is a finite-dimensional vector space, all bases for V contain
the same number of elements.

Proof. If fE1; : : : ;Eng is a basis for V with n elements, then Lemma B.2 implies
that every set containing more than n elements is linearly dependent, so no basis
can have more than n elements. On the other hand, if there were a basis containing
fewer than n elements, then Lemma B.2 would imply that fE1; : : : ;Eng is linearly
dependent, which is a contradiction. �

Because of the preceding proposition, if V is a finite-dimensional vector space,
it makes sense to define the dimension of V , denoted by dimV , to be the number
of elements in any basis.

I Exercise B.4. Suppose V is a finite-dimensional vector space.

(a) Show that every set that spans V contains a basis, and every linearly independent
subset of V is contained in a basis.

(b) Show that every subspace S � V is finite-dimensional and satisfies dimS �
dimV , with equality if and only if S D V .

(c) Show that dimV D 0 if and only if V D f0g.

I Exercise B.5. Suppose V is an infinite-dimensional vector space.

(a) Use Zorn’s lemma to show that every linearly independent subset of V is contained
in a basis.

(b) Show that any two bases for V have the same cardinality. [Hint: assume that S and
T are bases such that S has larger cardinality than T . Each element of T can be
expressed as a linear combination of elements of S , and the hypothesis guarantees
that some element of S does not appear in any of the expressions for elements
of T . Show that this element can be expressed as a linear combination of other
elements of S , contradicting the hypothesis that S is linearly independent.]

If S is a subspace of a finite-dimensional vector space V , we define the codimen-
sion of S in V to be dimV � dimS . By virtue of Exercise B.4(b), the codimension
of S is always nonnegative, and is zero if and only if S D V . A (linear) hyperplane
is a linear subspace of codimension 1.

Example B.6 (Euclidean Spaces). For each integer n� 0, Rn is a real vector space
under the usual operations of vector addition and scalar multiplication:

�
x1; : : : ; xn

�
C
�
y1; : : : ; yn

�
D
�
x1C y1; : : : ; xnC yn

�
;

a
�
x1; : : : ; xn

�
D
�
ax1; : : : ; axn

�
:

There is a natural basis .e1; : : : ; en/ for Rn, called the standard basis, where ei D
.0; : : : ; 1; : : : ; 0/ is the vector with a 1 in the i th place and zeros elsewhere; thus
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Rn has dimension n, as one would expect. Any element x 2 Rn can be written�
x1; : : : ; xn

�
D
Pn
iD1 x

iei , so its components with respect to the standard basis are
just its coordinates

�
x1; : : : ; xn

�
. //

Example B.7 (Complex Euclidean Spaces). With scalar multiplication and vector
addition defined just as in the real case, the n-dimensional complex Euclidean space
Cn becomes a complex vector space. Because the vectors .e1; : : : ; en/, defined as
above, form a basis for Cn over C, it follows that Cn has dimension n as a complex
vector space.

By restricting scalar multiplication to real scalars, we can also consider Cn as
a real vector space. In this case, it is straightforward to check that the vectors
.e1; ie1; : : : ; en; ien/ form a basis for Cn over R, so Cn has dimension 2n when
considered as a real vector space. //

If S and T are subspaces of a vector space V , the notation S C T denotes the
set of all vectors of the form vCw, where v 2 S and w 2 T . It is easily seen to be
a subspace of V , and in fact is the subspace spanned by S [ T . If S C T D V and
S \ T D f0g, then V is said to be the (internal) direct sum of S and T , and we
write V D S ˚ T . Two linear subspaces S;T � V are said to be complementary
subspaces if V D S ˚ T . In this case, every vector in V has a unique expression as
a sum of an element of S plus an element of T .

I Exercise B.8. Suppose S and T are subspaces of a finite-dimensional vector
space V .

(a) Show that S \ T is a subspace of V .
(b) Show that dim.S C T /D dimS C dimT � dim.S \ T /.
(c) Suppose V D SCT . Show that V D S˚T if and only if dimV D dimSCdimT .

I Exercise B.9. Let V be a finite-dimensional vector space. Show that every sub-
space S � V has a complementary subspace in V . In fact, given an arbitrary ba-
sis .E1; : : : ;En/ for V , show that there is some subset fi1; : : : ; ikg of the integers
f1; : : : ; ng such that span.Ei1 ; : : : ;Eik / is a complement to S . [Hint: choose a ba-
sis .F1; : : : ;Fm/ for S , and apply Exercise B.1(d) to the ordered .m C n/-tuple
.F1; : : : ;Fm;E1; : : : ;En/.]

Suppose S � V is a linear subspace. Any subset of V of the form

vC S D fvCw Ww 2 Sg

for some fixed v 2 V is called an affine subspace of V parallel to S . If S is a linear
hyperplane, then any affine subspace parallel to S is called an affine hyperplane.

I Exercise B.10. Let V be a vector space, and let vC S be an affine subspace of V
parallel to S .

(a) Show that vCS is a linear subspace if an only if it contains 0, which is true if and
only if v 2 S .

(b) Show that vC S D zvC zS if and only if S D zS and v � zv 2 S .
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Because of part (b) of the preceding exercise, we can unambiguously define the
dimension of vC S to be the dimension of S .

For each vector v 2 V , the affine subspace v C S is also called the coset of S
determined by v. The set V=S of cosets of S is called the quotient of V by S .

I Exercise B.11. Suppose V is a vector space and S is a linear subspace of V .
Define vector addition and scalar multiplication of cosets by

.vC S/C .wC S/ D .vCw/C S;

c.vC S/ D .cv/C S:

(a) Show that the quotient V=S is a vector space under these operations.
(b) Show that if V is finite-dimensional, then dimV=S D dimV � dimS .

Linear Maps

Let V and W be real vector spaces. A map T W V !W is linear if T .avC bw/D
aT vC bTw for all vectors v;w 2 V and all scalars a; b. (Because of the close con-
nection between linear maps and matrix multiplication described below, we gener-
ally write the action of a linear map T on a vector v as T v without parentheses,
unless parentheses are needed for grouping.) In the special case W D R, a linear
map from V to R is usually called a linear functional on V .

If T W V !W is a linear map, the kernel or null space of T , denoted by KerT
or T �1.0/, is the set fv 2 V W T v D 0g, and the image of T , denoted by ImT or
T .V /, is the set fw 2W WwD T v for some v 2 V g.

One simple but important example of a linear map arises in the following way.
Given a subspace S � V and a complementary subspace T , there is a unique linear
map � W V ! S defined by

�.vCw/D v for v 2 S; w 2 T:

This map is called the projection onto S with kernel T .
If V and W are vector spaces, a bijective linear map T W V ! W is called an

isomorphism. In this case, there is a unique inverse map T �1 W W ! V , and the
following computation shows that T �1 is also linear:

aT �1vC bT �1w D T �1T
�
aT �1vC bT �1w

�

D T �1
�
aT T �1vC bT T �1w

�
.by linearity of T /

D T �1.avC bw/:

For this reason, a bijective linear map is also said to be invertible. If there exists an
isomorphism T W V !W , then V and W are said to be isomorphic.

Example B.12. Let V be an n-dimensional real vector space, and .E1; : : : ;En/ be
an ordered basis for V . Define a map E W Rn! V by

E
�
x1; : : : ; xn

�
D x1E1C � � � C x

nEn:
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ThenE is linear and bijective, so it is an isomorphism, called the basis isomorphism
determined by this basis. Thus, every n-dimensional real vector space is isomorphic
to Rn. //

I Exercise B.13. Let V and W be vector spaces, and let .E1; : : : ;En/ be a basis
for V . For any n elements w1; : : : ;wn 2 W , show that there is a unique linear map
T W V !W satisfying T .Ei /Dwi for i D 1; : : : ; n.

I Exercise B.14. Let S W V !W and T W W !X be linear maps.

(a) Show that KerS and ImS are subspaces of V and W , respectively.
(b) Show that S is injective if and only if KerS D f0g.
(c) Show that if S is an isomorphism, then dimV D dimW (in the sense that these

dimensions are either both infinite or both finite and equal).
(d) Show that if S and T are both injective or both surjective, then T ıS has the same

property.
(e) Show that if T ıS is surjective, then T is surjective; give an example to show that

S might not be.
(f) Show that if T ıS is injective, then S is injective; give an example to show that T

might not be.

I Exercise B.15. Suppose V is a vector space and S is a subspace of V , and let
� W V ! V=S denote the projection defined by �.v/D vC S .

(a) Show that � is a surjective linear map with kernel equal to S .
(b) Given a linear map T W V !W , show that there exists a linear map zT W V=S!W

such that zT ı � D T if and only if S �KerT .

If V andW are vector spaces, a map F W V !W is called an affine map if it can
be written in the form F.v/DwC T v for some linear map T W V !W and some
fixed w 2W .

I Exercise B.16. Suppose F W V !W is an affine map. Show that F.V / is an affine
subspace of W , and the sets F�1.z/ for z 2W are parallel affine subspaces of V .

I Exercise B.17. Suppose V is a finite-dimensional vector space. Show that every
affine subspace of V is of the form F�1.z/ for some affine map F W V !W and some
z 2W .

Now suppose V and W are finite-dimensional vector spaces with ordered bases
.E1; : : : ;En/ and .F1; : : : ;Fm/, respectively. If T W V ! W is a linear map, the
matrix of T with respect to these bases is the m� n matrix

AD
�
Aij
�
D

�
A11 : : : A

1
n

:::
: : :

:::

Am1 : : : A
m
n

�

whose j th column consists of the components of TEj with respect to the basis .Fi /:

TEj D

mX

iD1

AijFi :
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By linearity, the action of T on an arbitrary vector vD
P
j v

jEj is then given by

T

� nX

jD1

vjEj

�
D

mX

iD1

nX

jD1

Aij v
jFi :

If we write the components of a vector with respect to a basis as a column matrix,
then the matrix representation of wD T v is given by matrix multiplication:

�
w1

:::

wm

�

D

�
A11 : : : A

1
n

:::
: : :

:::

Am1 : : : A
m
n

��
v1

:::

vn

�

;

or, more succinctly,

wi D

nX

jD1

Aij v
j :

Insofar as possible, we denote the row index of a matrix by a superscript and the
column index by a subscript, so that Aij represents the element in the i th row and
j th column. Thus the entry in the i th row and j th column of a matrix product AB
is given by

.AB/ij D

nX

kD1

AikB
k
j :

The composition of two linear maps is represented by the product of their ma-
trices. Provided we use the same basis for both the domain and the codomain, the
identity map on an n-dimensional vector space is represented by the n� n identity
matrix, which we denote by In; it is the matrix with ones on the main diagonal
(where the row number equals the column number) and zeros elsewhere.

The set M.m� n;R/ of all m� n real matrices is easily seen to be a real vector
space of dimension mn. (In fact, by stringing out the matrix entries in a single row,
we can identify it in a natural way with Rmn.) Similarly, because C is a real vector
space of dimension 2, the set M.m � n;C/ of m � n complex matrices is a real
vector space of dimension 2mn. When mD n, we abbreviate the spaces of n � n
square real and complex matrices by M.n;R/ and M.n;C/, respectively. In this
case, matrix multiplication gives these spaces additional algebraic structure. If V ,
W , and Z are vector spaces, a map B W V �W ! Z is said to be bilinear if it is
linear in each variable separately when the other is held fixed:

B.a1v1C a2v2;w/D a1B.v1;w/C a2B.v2;w/;

B.v; a1w1C a2w2/D a1B.v;w1/C a2B.v;w2/:

An algebra (over R) is a real vector space V endowed with a bilinear product map
V � V ! V . The algebra is said to be commutative or associative if the bilinear
product has that property.
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I Exercise B.18. Show that matrix multiplication turns both M.n;R/ and M.n;C/
into associative algebras over R. Show that they are noncommutative unless nD 1.

Suppose A is an n � n matrix. If there is a matrix B such that AB D BAD In,
then A is said to be invertible or nonsingular; it is singular otherwise.

I Exercise B.19. Suppose A is an n� n matrix. Prove the following statements.

(a) If A is nonsingular, then there is a unique n� n matrix B such that AB D BAD
In. This matrix is denoted by A�1 and is called the inverse of A.

(b) If A is the matrix of a linear map T W V !W with respect to some bases for V
and W , then T is invertible if and only if A is invertible, in which case A�1 is the
matrix of T �1 with respect to the same bases.

(c) IfB is an n�nmatrix such that eitherAB D In orBAD In, thenA is nonsingular
and B DA�1.

Because Rn comes equipped with the standard basis .ei /, we can unambiguously
identify linear maps from Rn to Rm with m � n real matrices, and we often do so
without further comment.

Change of Basis

In this book we often need to be concerned with how various objects transform when
we change bases. Suppose .Ei / and

�
zEj
�

are two bases for a finite-dimensional real
vector space V . Then each basis can be written uniquely in terms of the other, so
there is an invertible matrix B , called the transition matrix between the two bases,
such that

Ei D

nX

jD1

B
j
i
zEj ; zEj D

nX

iD1

�
B�1

�i
j
Ei : (B.1)

Now suppose V and W are finite-dimensional vector spaces and T W V ! W

is a linear map. With respect to bases .Ei / for the domain V and .Fj / for the
codomain W , the map T is represented by some matrix A D

�
Aij
�
. If

�
zEi
�

and
�
zFj
�

are any other choices of bases for V and W , respectively, let B and C denote
the transition matrices satisfying (B.1) and

Fi D

mX

jD1

C
j
i
zFj ; zFj D

mX

iD1

�
C�1

�i
j
Fi :

Then a straightforward computation shows that the matrix zA representing T with
respect to the new bases is related to A by

zAij D
X

k;l

C il A
l
k

�
B�1

�k
j
;

or, in matrix notation,
zAD CAB�1:
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In particular, if T is a map from V to itself, we usually use the same basis for the
domain and the codomain. In this case, if A denotes the matrix of T with respect to
.Ei /, and zA is its matrix with respect to

�
zEi
�
, we have

zADBAB�1: (B.2)

If V and W are real vector spaces, the set L.V IW / of linear maps from V to W
is a real vector space under the operations

.S C T /vD SvC T vI .cT /vD c.T v/:

If dimV D n and dimW D m, then each choice of bases for V and W gives us
a map L.V IW /!M.m � n;R/, by sending every linear map to its matrix with
respect to the chosen bases. This map is easily seen to be linear and bijective, so
dim L.V IW /D dim M.m� n;R/Dmn.

If T W V !W is a linear map between finite-dimensional spaces, the dimension
of ImT is called the rank of T , and the dimension of KerT is called its nullity.
The following theorem shows that, up to choices of bases, a linear map is completely
determined by its rank together with the dimensions of its domain and codomain.

Theorem B.20 (Canonical Form for a Linear Map). Suppose V andW are finite-
dimensional vector spaces, and T W V !W is a linear map of rank r . Then there are
bases for V and W with respect to which T has the following matrix representation
(in block form): �

Ir 0

0 0

�
:

Proof. Choose bases .F1; : : : ;Fr / for ImT and .K1; : : : ;Kk/ for KerT . Extend
.Fj / arbitrarily to a basis .F1; : : : ;Fm/ for W . By definition of the image, there
are vectors E1; : : : ;Er 2 V such that TEi D Fi for i D 1; : : : ; r . We will show that
.E1; : : : ;Er ;K1; : : : ;Kk/ is a basis for V ; once we know this, it follows easily that
T has the desired matrix representation.

Suppose first that
P
i a
iEi C

P
j b

jKj D 0. Applying T to this equation yields
Pr
iD1 a

iFi D 0, which implies that all the coefficients ai are zero. Then it follows
also that all the bj ’s are zero because the Kj ’s are linearly independent. Therefore,
the .r C k/-tuple .E1; : : : ;Er ;K1; : : : ;Kk/ is linearly independent.

To show that these vectors span V , let v 2 V be arbitrary. We can express T v 2
ImT as a linear combination of .F1; : : : ;Fr /:

T vD

rX

iD1

ciFi :

If we put w D
P
i c
iEi 2 V , it follows that Tw D T v, so z D v � w 2 KerT .

Writing z D
P
j d

jKj , we obtain

vDwC z D

rX

iD1

ciEi C

kX

jD1

d jKj ;

so the .r C k/-tuple .E1; : : : ;Er ;K1; : : : ;Kk/ does indeed span V . �
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This theorem says that every linear map can be put into a particularly nice diag-
onal form by appropriate choices of bases in the domain and codomain. However,
it is important to be aware of what the theorem does not say: if T W V ! V is a
linear map from a finite-dimensional vector space to itself, it might not be possible
to represent T by a diagonal matrix with respect to the same basis for the domain
and codomain.

The next result is central in applications of linear algebra to smooth manifold
theory; it is a corollary to the proof of the preceding theorem.

Corollary B.21 (Rank-Nullity Law). Suppose T W V ! W is a linear map be-
tween finite-dimensional vector spaces. Then

dimV D rankT C nullityT D dim.ImT /C dim.KerT /:

Proof. The preceding proof showed that V has a basis consisting of kC r elements,
where k D dim.KerT / and r D dim.ImT /. �

I Exercise B.22. Suppose V;W;X are finite-dimensional vector spaces, and S W V !
W and T W W !X are linear maps. Prove the following statements.

(a) rankS � dimV , with equality if and only if S is injective.
(b) rankS � dimW , with equality if and only if S is surjective.
(c) If dimV D dimW and S is either injective or surjective, then it is an isomorphism.
(d) rank.T ı S/� rankS , with equality if and only if ImS \KerT D f0g.
(e) rank.T ı S/� rankT , with equality if and only if ImS CKerT DW .
(f) If S is an isomorphism, then rank.T ı S/D rankT .
(g) If T is an isomorphism, then rank.T ı S/D rankS .

Let A be an m� n matrix. The transpose of A is the n�m matrix AT obtained
by interchanging the rows and columns of A:

�
AT
�j
i D A

i
j . A square matrix A is

said to be symmetric if ADAT and skew-symmetric if AD�AT .

I Exercise B.23. Show that if A and B are matrices of dimensionsm�n and n�k,
respectively, then .AB/T DBTAT .

The rank of an m � n matrix A is defined to be the rank of the corresponding
linear map from Rn to Rm. Because the columns of A, thought of as vectors in Rm,
are the images of the standard basis vectors under this linear map, the rank of A
can also be thought of as the dimension of the span of its columns, and is some-
times called its column rank. Analogously, we define the row rank of A to be the
dimension of the span of its rows, thought of similarly as vectors in Rn.

Proposition B.24. The row rank of a matrix is equal to its column rank.

Proof. Let A be an m� n matrix. Because the row rank of A is equal to the column
rank of AT , we must show that rankAD rankAT .
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Suppose the (column) rank of A is k. Thought of as a linear map from Rn to Rm,
A factors through ImA as follows:

Rn
A � Rm

ImA;
�

�

zA
�

where zA is just the map A with its codomain restricted to ImA, and � is the inclusion
of ImA into Rm. Choosing a basis for the k-dimensional subspace ImA, we can
write this as a matrix equation AD BC , where B and C are the matrices of � and
zA with respect to the standard bases in Rn and Rm and the chosen basis in ImA.

Taking transposes, we obtain AT D C TBT , from which it follows that rankAT �
rankBT . Since BT is a k �m matrix, its column rank is at most k, which shows
that rankAT � rankA. Reversing the roles of A and AT and using the fact that
.AT /T DA, we conclude that rankAD rankAT . �

Suppose A D
�
Aij
�

is an m � n matrix. If we choose integers 1 � i1 < � � � <
ik �m and 1� j1 < � � �< jl � n, we obtain a k � l matrix whose entry in the pth
row and qth column is Aipjq :

�
A
i1
j1
: : : A

i1
jl

:::
: : :

:::

A
ik
j1
: : : A

ik
jl

˘

:

Such a matrix is called a submatrix of A. Looking at submatrices gives a convenient
criterion for checking the rank of a matrix.

Proposition B.25. Suppose A is an m � n matrix. Then rankA � k if and only if
some k � k submatrix of A is nonsingular.

Proof. By definition, rankA� k if and only if A has at least k linearly independent
columns, which is equivalent to A having some m � k submatrix with rank k. But
by Proposition B.24, an m� k submatrix has rank k if and only if it has k linearly
independent rows. Thus A has rank at least k if and only if it has anm�k submatrix
with k linearly independent rows, if and only if it has a k � k submatrix that is
nonsingular. �

The Determinant

There are a number of ways of defining the determinant of a square matrix, each of
which has advantages in different contexts. The definition we give here, while not
particularly intuitive, is the simplest to state and fits nicely with our treatment of
alternating tensors in Chapter 14.

IfX is a set, a permutation of X is a bijective map fromX to itself. The set of all
permutations of X is a group under composition. A transposition is a permutation
that interchanges two elements and leaves all the others fixed.
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We let Sn denote the group of permutations of the set f1; : : : ; ng, called the sym-
metric group on n elements. The properties of Sn that we need are summarized in
the following proposition; proofs can be found in any good undergraduate algebra
text such as [Hun97] or [Her75].

Proposition B.26 (Properties of the Symmetric Group).

(a) Every element of Sn can be expressed as a composition of finitely many
transpositions.

(b) For each � 2 Sn, the parity (evenness or oddness) of the number of factors in
any decomposition of � as a product of transpositions is independent of the
choice of decomposition. We say that � is an even permutation if every such de-
composition has an even number of factors, and an odd permutation otherwise.

(c) For each � 2 Sn, define the sign of � to be the number

sgn� D

(
C1 if � is even;

�1 if � is odd:

If n� 2, sgn W Sn!f˙1g is a surjective group homomorphism, where we con-
sider f˙1g as a group under multiplication.

I Exercise B.27. Prove (or look up) Proposition B.26.

IfAD
�
Aij
�

is an n�n (real or complex) matrix, the determinant of A is defined
by the expression

detAD
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n : (B.3)

For simplicity, we assume throughout this section that our matrices are real. The
statements and proofs, however, hold equally well in the complex case. In our study
of Lie groups we also have occasion to consider determinants of complex matrices.

Although the determinant is defined as a function of matrices, it is also use-
ful to think of it as a function of n vectors in Rn: if A1; : : : ;An 2 Rn, we inter-
pret det.A1; : : : ;An/ to mean the determinant of the matrix whose columns are
.A1; : : : ;An/:

det.A1; : : : ;An/D det

�
A11 : : : A

1
n

:::
: : :

:::

An1 : : : A
n
n

�

:

It is obvious from the defining formula (B.3) that the function det W Rn� � � � �Rn!
R so defined is multilinear, which means that it is linear as a function of each vector
when all the other vectors are held fixed.

Proposition B.28 (Properties of the Determinant). Let A be an n� n matrix.

(a) If one column of A is multiplied by a scalar c, the determinant is multiplied by
the same scalar:

det.A1; : : : ; cAi ; : : : ;An/D c det.A1; : : : ;Ai ; : : : ;An/:
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(b) The determinant changes sign when two columns are interchanged:

det.A1; : : : ;Aq; : : : ;Ap; : : : ;An/D�det.A1; : : : ;Ap; : : : ;Aq; : : : ;An/: (B.4)

(c) The determinant is unchanged by adding a scalar multiple of one column to any
other column:

det.A1; : : : ;Ai ; : : : ;Aj C cAi ; : : : ;An/D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/:

(d) For every scalar c, det.cA/D cn detA.
(e) If any two columns of A are identical, then detAD 0.
(f) If A has a column of zeros, then detAD 0.
(g) detAT D detA.
(h) detIn D 1.
(i) If A is singular, then detAD 0.

Proof. Part (a) is part of the definition of multilinearity, and (d) follows immediately
from (a). Part (f) also follows from (a), because a matrix with a column of zeros is
unchanged when that column is multiplied by zero, so detA D 0.detA/ D 0. To
prove (b), suppose p < q and let � 2 Sn be the transposition that interchanges p
and q, leaving all other indices fixed. Then the left-hand side of (B.4) is equal to

det.A1; : : : ;Aq; : : : ;Ap; : : : ;An/

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.p/q � � �A�.q/p � � �A�.n/n

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.q/p � � �A�.p/q � � �A�.n/n

D
X

�2Sn

.sgn�/A�.�.1//1 � � �A�.�.n//n

D�
X

�2Sn

�
sgn.��/

�
A
�.�.1//
1 � � �A�.�.n//n

D�
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n

D�det.A1; : : : ;Ap; : : : ;Aq; : : : ;An/;

where the next-to-last line follows by substituting � D �� and noting that � runs
over all elements of Sn as � does. Part (e) is then an immediate consequence of (b),
and (c) follows by multilinearity:

det.A1; : : : ;Ai ; : : : ;Aj C cAi ; : : : ;An/

D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/C c det.A1; : : : ;Ai ; : : : ;Ai : : : ;An/

D det.A1; : : : ;Ai ; : : : ;Aj : : : ;An/C 0:
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Part (g) follows directly from the definition of the determinant:

detAT D
X

�2Sn

.sgn�/A1�.1/ � � �A
n
�.n/

D
X

�2Sn

.sgn�/A�
�1.�.1//

�.1/
� � �A

��1.�.n//

�.n/

D
X

�2Sn

.sgn�/A�
�1.1/
1 � � �A�

�1.n/
n

D
X

�2Sn

.sgn�/A�.1/1 � � �A�.n/n D detA:

In the third line we have used the fact that multiplication is commutative, and the

numbers
˚
A
��1.�.1//

�.1/
; : : : ;A

��1.�.n//

�.n/

�
are just

˚
A
��1.1/
1 ; : : : ;A

��1.n/
n

�
in a differ-

ent order; and the fourth line follows by substituting � D ��1 and noting that
sgn��1 D sgn� . Similarly, (h) follows from the definition, because when A is the
identity matrix, for each � except the identity permutation there is some j such that
A
�.j /
j D 0.

Finally, to prove (i), suppose A is singular. Then, as a linear map from Rn to Rn,
A has rank less than n by parts (a) and (b) of Exercise B.22. Thus the columns
of A are linearly dependent, so at least one column can be written as a linear com-
bination of the others: Aj D

P
i¤j c

iAi . The result then follows from (e) and the
multilinearity of det. �

The operations on matrices described in parts (a), (b), and (c) of the preceding
proposition (multiplying one column by a scalar, interchanging two columns, and
adding a multiple of one column to another) are called elementary column oper-
ations. Part of the proposition, therefore, describes precisely how a determinant is
affected by elementary column operations. If we define elementary row operations
analogously, the fact that the determinant of AT is equal to that of A implies that
the determinant behaves similarly under elementary row operations.

Since the columns of an n � n matrix A are the images of the standard basis
vectors under the linear map from Rn to itself that A defines, elementary column
operations correspond to changes of basis in the domain. Thus each elementary
column operation on a matrix A can be realized by multiplying A on the right by
a suitable matrix. For example, multiplying the i th column by c is achieved by
multiplying A by the matrix Ec that is equal to the identity matrix except for a c in
the .i; i/ position:

�
A11 : : : A

1
i : : : A

1
n

:::
:::

:::

A
j
1 : : : A

j
i : : : A

j
n

:::
:::

:::

An1 : : : A
n
i : : : A

n
n

��
1 : : : 0 : : : 0
: : :

c
: : :

0 : : : 0 : : : 1

�

D

�
A11 : : : cA

1
i : : : A

1
n

:::
:::

:::

A
j
1 : : : cA

j
i : : : A

j
n

:::
:::

:::

An1 : : : cA
n
i : : : A

n
n

�

:
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I Exercise B.29. Show that replacing one column of a matrix by c times that same
column is equivalent to multiplying on the right by a matrix whose determinant is c;
interchanging two columns is equivalent to multiplying on the right by a matrix whose
determinant is �1; and adding a multiple of one column to another is equivalent to
multiplying on the right by a matrix of determinant 1. Matrices of these three types are
called elementary matrices.

I Exercise B.30. Suppose A is a nonsingular n� n matrix.

(a) Show that A can be reduced to the identity In by a sequence of elementary column
operations.

(b) Show that A is equal to a product of elementary matrices.

Elementary matrices form a key ingredient in the proof of the following theorem,
which is arguably the deepest and most important property of the determinant.

Theorem B.31. If A and B are n� n matrices, then

det.AB/D .detA/.detB/:

Proof. If B is singular, then rankB < n, which implies that rankAB < n. Therefore
both detB and detAB are zero by Proposition B.28(i). On the other hand, parts (a),
(b), and (c) of Proposition B.28 combined with Exercise B.29 show that the theorem
is true when B is an elementary matrix. Finally, if B is an arbitrary nonsingular
matrix, then B can be written as a product of elementary matrices by Exercise B.30,
and the result follows by induction on the number of elementary matrices in such a
product. �
Corollary B.32. If A is a nonsingular n�n matrix, then detA¤ 0 and det

�
A�1

�
D

.detA/�1.

Proof. Just note that 1D detIn D det
�
AA�1

�
D .detA/

�
detA�1

�
. �

Corollary B.33. A square matrix is singular if and only if its determinant is zero.

Proof. One direction follows from Proposition B.28(i), and the other from Corol-
lary B.32. �
Corollary B.34. Suppose A and B are n� n matrices and B is nonsingular. Then
det
�
BAB�1

�
D detA.

Proof. This is just a computation using Theorem B.31 and Corollary B.32:

det
�
BAB�1

�
D .detB/.detA/

�
detB�1

�

D .detB/.detA/.detB/�1

D detA: �
The last corollary allows us to extend the definition of the determinant to linear

maps on arbitrary finite-dimensional vector spaces. Suppose V is an n-dimensional
vector space and T W V ! V is a linear map. With respect to a choice of basis
for V , T is represented by an n � n matrix. As we observed above, the matrices
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A and zA representing T with respect to two different bases are related by zA D
BAB�1 for some nonsingular matrix B (see (B.2)). It follows from Corollary B.34,
therefore, that det zAD detA. Thus, we can make the following definition: for each
linear map T W V ! V from a finite-dimensional vector space to itself, we define the
determinant of T to be the determinant of any matrix representation of T (using
the same basis for the domain and codomain).

For actual computations of determinants, the formula in the following proposi-
tion is usually more useful than the definition.

Proposition B.35 (Expansion by Minors). Let A be an n� n matrix, and for each
i; j let M j

i denote the .n � 1/ � .n � 1/ submatrix obtained by deleting the i th
column and j th row of A. For any fixed i between 1 and n inclusive,

detAD
nX

jD1

.�1/iCjA
j
i detM j

i : (B.5)

Proof. It is useful to consider first a special case: suppose A is an n� n matrix that
has the block form

AD

�
B 0

C 1

�
; (B.6)

where B is an .n� 1/� .n� 1/ matrix and C is a 1� .n� 1/ row matrix. Then in
the defining formula (B.3) for detA, the factor A�.n/n is equal to 1 when �.n/D n
and zero otherwise, so in fact the only terms that are nonzero are those in which
� 2 Sn�1, thought of as the subgroup of Sn consisting of elements that permute
f1; : : : ; n� 1g and leave n fixed. Thus the determinant of A simplifies to

detAD
X

�2Sn�1

.sgn�/A�.1/1 � � �A
�.n�1/
n�1 D detB:

Now let A be arbitrary, and fix i 2 f1; : : : ; ng. For each j D 1; : : : ; n, let Xji
denote the matrix obtained by replacing the i th column of A by the basis vector ej .
Since the determinant is a multilinear function of its columns,

detAD det

�
A1; : : : ;Ai�1;

nX

jD1

A
j
i ej ;AiC1; : : : ;An

�

D

nX

jD1

A
j
i det.A1; : : : ;Ai�1; ej ;AiC1; : : : ;An/

D

nX

jD1

A
j
i detXji : (B.7)

On the other hand, by interchanging columns n � i times and then interchanging
rows n�j times, we can transform X

j
i to a matrix of the form (B.6) with B DM j

i .
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Therefore, by the observation in the preceding paragraph,

detXji D .�1/
n�iCn�j detM j

i D .�1/
iCj detM j

i :

Inserting this into (B.7) completes the proof. �

Each determinant detM j
i is called a minor of A, and (B.5) is called the ex-

pansion of detA by minors along the i th column. Since detAD detAT , there is
an analogous expansion along any row. The factor .�1/iCj detM j

i multiplying Aji
in (B.5) is called the cofactor of Aj

i
, and is denoted by cof ji .

Proposition B.36 (Cramer’s Rule). If A is a nonsingular n � n matrix, then A�1

is equal to 1=.detA/ times the transposed cofactor matrix of A. Thus, the entry in
the i th row and j th column of A�1 is

�
A�1

�i
j
D

1

detA
cofji D

1

detA
.�1/iCj detM j

i : (B.8)

Proof. Let B ij denote the expression on the right-hand side of (B.8). Then

nX

jD1

B ijA
j

k
D

1

detA

nX

jD1

.�1/iCjA
j

k
detM j

i : (B.9)

When k D i , the summation on the right-hand side is precisely the expansion of
detA by minors along the i th column, so the right-hand side of (B.9) is equal to 1.
On the other hand, if k ¤ i , the summation is equal to the determinant of the matrix
obtained by replacing the i th column of A by the kth column. Since this matrix has
two identical columns, its determinant is zero. Thus (B.9) is equivalent to the matrix
equation BA D In, where B is the matrix .B ij /. By Exercise B.19(c), therefore,
B DA�1. �

A square matrix A D
�
Aij
�

is said to be upper triangular if Aij D 0 for i > j
(i.e., the only nonzero entries are on and above the main diagonal). Determinants of
upper triangular matrices are particularly easy to compute.

Proposition B.37. If A is an upper triangular n � n matrix, then the determinant
of A is the product of its diagonal entries:

detADA11 � � �A
n
n:

Proof. When nD 1, this is trivial. So assume the result is true for .n� 1/� .n� 1/
matrices, and let A be an upper triangular n�n matrix. In the expansion of detA by
minors along the first column, there is only one nonzero entry, namely A11 detM 1

1 .
By induction, detM 1

1 DA
2
2 � � �A

n
n, which proves the proposition. �

Suppose X is an .m C k/ � .m C k/ matrix. We say that X is block upper
triangular if X has the form

X D

�
A B

0 C

�
(B.10)
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for some matrices A;B;C of sizes m�m, m� k, and k � k, respectively.

Proposition B.38. If X is the block upper triangular matrix given by (B.10), then
detX D .detA/.detC/.

Proof. If A is singular, then the columns of both A and X are linearly depen-
dent, which implies that detX D 0 D .detA/.detC/. So let us assume that A is
nonsingular.

Consider first the following special case:

X D

�
Im 0

0 C

�
:

Expanding by minors along the first column and using induction onm, we conclude
easily that detX D detC in this case. A similar argument shows that

det

�
A 0

0 Ik

�
D detA:

In the general case, a straightforward computation yields the factorization
�
A B

0 C

�
D

�
A 0

0 Ik

��
Im 0

0 C

��
Im A

�1B

0 Ik

�
: (B.11)

By the preceding observations, the determinants of the first two factors are equal to
detA and detC , respectively; and the third factor is upper triangular, so its determi-
nant is 1 by Proposition B.37. The result then follows from Theorem B.31. �

Inner Products and Norms

If V is a real vector space, an inner product on V is a map V � V ! R, usually
written .v;w/ 7! hv;wi, that satisfies the following conditions:

(i) SYMMETRY:

hv;wi D hw;viI

(ii) BILINEARITY:

havC a0v0;wi D ahv;wi C a0hv0;wi;

hv; bwC b0w0i D bhv;wi C b0hv;w0iI

(iii) POSITIVE DEFINITENESS:

hv; vi � 0; with equality if and only if vD 0:

A vector space endowed with a specific inner product is called an inner product
space. The standard example is, of course, Rn with its Euclidean dot product:

hx;yi D x � y D
nX

iD1

xiyi :
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Suppose V is an inner product space. For each v 2 V , the length of v is the
nonnegative real number jvj D

p
hv; vi. A unit vector is a vector of length 1. If

v;w 2 V are nonzero vectors, the angle between v and w is defined to be the unique
� 2 Œ0;�� satisfying

cos� D
hv;wi

jvj jwj
:

Two vectors v;w 2 V are said to be orthogonal if hv;wi D 0; this means that either
one of the vectors is zero, or the angle between them is �=2.

I Exercise B.39. Let V be an inner product space. Show that the length function
associated with the inner product satisfies

jvj > 0; v 2 V; v¤ 0;

jcvj D jcjjvj; c 2R; v 2 V;

jvCwj � jvj C jwj; v;w 2 V;

and the Cauchy–Schwarz inequality:

jhv;wij � jvjjwj; v;w 2 V:

Suppose V is a finite-dimensional inner product space. A basis .E1; : : : ;En/ for
V is said to be orthonormal if each Ei is a unit vector and Ei is orthogonal to Ej
when i ¤ j .

Proposition B.40 (The Gram–Schmidt Algorithm). Let V be an inner product
space of dimension n� 1. Then V has an orthonormal basis. In fact, if .E1; : : : ;En/
is an arbitrary basis for V , there is an orthonormal basis

�
zE1; : : : ; zEn

�
with the

property that

span
�
zE1; : : : ; zEk

�
D span.E1; : : : ;Ek/ for k D 1; : : : ; n: (B.12)

Proof. The proof is by induction on n D dimV . If n D 1, there is only one basis
element E1, and then zE1 DE1=jE1j is an orthonormal basis.

Suppose the result is true for inner product spaces of dimension n� 1, and let V
have dimension n. Then W D span.E1; : : : ;En�1/ is an .n� 1/-dimensional inner
product space with the inner product restricted from V , so there is an orthonormal
basis

�
zE1; : : : ; zEn�1

�
satisfying (B.12) for k D 1; : : : ; n� 1. Define zEn by

zEn D
En �

Pn�1
iD1hEn;

zEi i zEiˇ̌
En �

Pn�1
iD1hEn;

zEi i zEi
ˇ̌ : (B.13)

A computation shows that
�
zE1; : : : ; zEn

�
is the desired orthonormal basis for V . �

I Exercise B.41. For w D
�
w1; : : : ;wn

�
and z D

�
z1; : : : ; zn

�
2 Cn, define the

Hermitian dot product by w � z D
Pn
jD1w

j zj , where, for any complex number
z D x C iy, the notation xz denotes the complex conjugate: xz D x � iy. A basis
.E1; : : : ;En/ for Cn (over C) is said to be orthonormal ifEi �Ei D 1 andEi �Ej D 0
for i ¤ j . Show that the statement and proof of Proposition B.40 hold for the Hermi-
tian dot product.
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An isomorphism T W V ! W between inner product spaces is called a linear
isometry if it takes the inner product of V to that of W :

hT v;Twi D hv;wi for all v;w 2 V:

I Exercise B.42. Show that every linear isometry between inner product spaces is a
homeomorphism that preserves lengths, angles, and orthogonality, and takes orthonor-
mal bases to orthonormal bases.

I Exercise B.43. Given any basis .Ei / for a finite-dimensional vector space V ,
show that there is a unique inner product on V for which .Ei / is orthonormal.

I Exercise B.44. Suppose V is a finite-dimensional inner product space and
E W Rn ! V is the basis map determined by some orthonormal basis. Show that E
is a linear isometry when Rn is endowed with the Euclidean inner product.

The preceding exercise shows that finite-dimensional inner product spaces are
geometrically indistinguishable from the Euclidean space of the same dimension.

If V is a finite-dimensional inner product space and S � V is a subspace, the
orthogonal complement of S in V is the set

S? D fv 2 V W hv;wi D 0 for all w 2 Sg:

I Exercise B.45. Let V be a finite-dimensional inner product space and let S � V
be a subspace. Show that S? is a subspace and V D S ˚ S?.

Thanks to the result of the preceding exercise, for any subspace S of an inner
product space V , there is a natural projection � W V ! S with kernel S?. This is
called the orthogonal projection of V onto S .

Norms

If V is a real vector space, a norm on V is a function from V to R, written v 7! jvj,
satisfying the following properties.

(i) POSITIVITY: jvj � 0 for all v 2 V , with equality if and only if vD 0.
(ii) HOMOGENEITY: jcvj D jcj jvj for all c 2R and v 2 V .

(iii) TRIANGLE INEQUALITY: jvCwj � jvj C jwj for all v;w 2 V .

A vector space together with a specific choice of norm is called a normed linear
space. Exercise B.39 shows that the length function associated with any inner prod-
uct is a norm; thus, in particular, every finite-dimensional vector space possesses
many norms. Given a norm on V , the distance function d.v;w/D jv �wj turns V
into a metric space, yielding a topology on V called the norm topology.

Example B.46 (Euclidean Spaces). Endowed with the Euclidean norm defined by

jxj D
p
x � x; (B.14)

Rn is a normed linear space, whose norm topology is exactly the Euclidean topology
described in Appendix A. //
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Example B.47 (The Frobenius Norm on Matrices). The vector space M.m �
n;R/ of m � n real matrices has a natural Euclidean inner product, obtained by
identifying a matrix with a point in Rmn:

A �B D
X

i;j

AijB
i
j :

This yields a norm on matrices, called the Frobenius norm:

jAj D

qX

i;j

�
Aij
�2
: (B.15)

Whenever we use a norm on matrices, it is always this one. //

I Exercise B.48. For any matrices A 2M.m � n;R/ and B 2M.n � k;R/, show
that

jABj � jAj jBj :

Two norms j � j1 and j � j2 on a vector space V are said to be equivalent if there
are positive constants c;C such that

cjvj1 � jvj2 � C jvj1 for all v 2 V:

I Exercise B.49. Show that equivalent norms determine the same topology.

I Exercise B.50. Show that any two norms on a finite-dimensional vector space are
equivalent. [Hint: first do the case in which V D Rn and one of the norms is the
Euclidean norm, and consider the restriction of the other norm to the unit sphere.]

The preceding exercise shows that finite-dimensional normed linear spaces of
the same dimension are topologically indistinguishable from one another. Thus, any
such space automatically inherits all the usual topological properties of Euclidean
space, such as compactness of closed and bounded subsets.

If V and W are normed linear spaces, a linear map T W V ! W is said to be
bounded if there exists a positive constant C such that

jT vj � C jvj for all v 2 V:

I Exercise B.51. Show that a linear map between normed linear spaces is continu-
ous if and only if it is bounded. [Hint: to show that continuity of T implies bounded-
ness, first show that there exists ı > 0 such that jxj< ı) jT .x/j< 1.]

I Exercise B.52. Show that every linear map between finite-dimensional normed
linear spaces is bounded and therefore continuous.

Direct Products and Direct Sums

If V1; : : : ; Vk are real vector spaces, their direct product is the vector space whose
underlying set is the Cartesian product V1 � � � � � Vk , with addition and scalar mul-
tiplication defined componentwise:

�
v1; : : : ; vk

�
C
�
v01; : : : ; v

0
k

�
D
�
v1C v

0
1; : : : ; vk C v

0
k

�
;
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c
�
v1; : : : ; vk

�
D
�
cv1; : : : ; cvk

�
:

The basic example is the Euclidean space Rn DR� � � � �R.
For some applications (chiefly in our treatment of de Rham cohomology in Chap-

ters 17 and 18), it is important to generalize this to an infinite number of vector
spaces. For this discussion, we turn to the general setting of modules over a com-
mutative ring R. Linear maps between R-modules are defined exactly as for vector
spaces: if V and W are R-modules, a map F W V ! W is said to be R-linear if
F.avCbw/D aF.v/CbF.w/ for all a; b 2R and v;w 2 V . If V is an R-module,
a subset S � V is called a submodule of V if it is closed under addition and scalar
multiplication, so it is itself an R-module. Throughout the rest of this section we
assume that R is a fixed commutative ring. In all of our applications, R will be
either the field R of real numbers, in which case the modules are real vector spaces
and the linear maps are the usual ones, or the ring of integers Z, in which case the
modules are abelian groups and the linear maps are group homomorphisms.

If .V˛/˛2A is an arbitrary indexed family of sets, their Cartesian product, de-
noted by

Q
˛2A V˛ , is defined as the set of functions v W A!

S
˛2A V˛ with the

property that v.˛/ 2 V˛ for each ˛. Thanks to the axiom of choice, the Cartesian
product of a nonempty indexed family of nonempty sets is nonempty. If v is an el-
ement of the Cartesian product, we usually denote the value of v at ˛ 2 A by v˛
instead of v.˛/; the element v itself is usually denoted by .v˛/˛2A, or just .v˛/ if
the index set is understood. This can be thought of as an indexed family of elements
of the sets V˛ , or an “A-tuple.” For each ˇ 2A, we have a canonical projection map
�ˇ W

Q
˛2A V˛! Vˇ , defined by

�ˇ
�
.v˛/˛2A

�
D vˇ :

Now suppose that .V˛/˛2A is an indexed family of R-modules. The direct prod-
uct of the family is the set

Q
˛2A V˛ , made into an R-module by defining addition

and scalar multiplication as follows:

.v˛/C
�
v0˛
�
D
�
v˛ C v

0
˛

�
;

c.v˛/D .cv˛/:

The zero element of this module is the A-tuple with v˛ D 0 for every ˛. It is easy to
check that each projection map �ˇ is R-linear.

Proposition B.53 (Characteristic Property of the Direct Product). Let .V˛/˛2A
be an indexed family of R-modules. Given an R-module W and a family of R-
linear maps G˛ W W ! V˛ , there exists a unique R-linear map G W W !

Q
˛2A V˛

such that �˛ ıG DG˛ for each ˛ 2A.

I Exercise B.54. Prove the preceding proposition.

Complementary to direct products is the notion of direct sums. Given an indexed
family .V˛/˛2A as above, we define the direct sum of the family to be the submodule
of their direct product consisting of A-tuples .v˛/˛2A with the property that v˛ D 0
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for all but finitely many ˛. The direct sum is denoted by
L
˛2A V˛ , or in the case of

a finite family by V1 ˚ � � � ˚ Vk . For finite families of modules, the direct product
and the direct sum are identical.

For each ˇ 2 A, there is a canonical R-linear injection �ˇ W Vˇ !
L
˛2A V˛ ,

defined by letting �ˇ .v/ be the A-tuple .v˛/˛2A with vˇ D v and v˛ D 0 for ˛¤ ˇ.
In the case of a finite direct sum, this just means �ˇ .v/D .0; : : : ; 0; v; 0; : : : ; 0/, with
v in position ˇ.

Proposition B.55 (Characteristic Property of the Direct Sum). Let .V˛/˛2A be
an indexed family of R-modules. Given an R-module W and a family of R-linear
maps G˛ W V˛!W , there exists a unique R-linear map G W

L
˛2A V˛!W such

that G ı �˛ DG˛ for each ˛ 2A.

I Exercise B.56. Prove the preceding proposition.

If W is an R-module and .V˛/˛2A is a family of subspaces of W , then the char-
acteristic property applied to the inclusions �˛ W V˛ ,!W guarantees the existence
of a canonical R-linear map

L
˛ V˛ ! W that restricts to inclusion on each V˛ .

This map is an isomorphism precisely when the V˛’s are chosen so that every el-
ement of W has a unique expression as a finite linear combination

P
˛ c˛v˛ with

v˛ 2 V˛ for each ˛. In this case, we can naturally identify W with
L
˛ V˛ , and we

say that W is the internal direct sum of the submodules fV˛g, extending the termi-
nology we introduced earlier for two complementary subspaces of a vector space.
A direct sum of an abstract family of modules is sometimes called their external
direct sum to distinguish it from an internal direct sum.

If V and W are R-modules, the set HomR.V;W / of all R-linear maps from V

to W is an R-module under pointwise addition and scalar multiplication:

.F CG/.v/D F.v/CG.v/;

.aF /.v/D aF.v/:

(If V and W are real vector spaces, then HomR.V;W / is just the space L.V IW /
of R-linear maps; if they are abelian groups, then Z-linear maps are group homo-
morphisms, and we usually write Hom.V;W / instead of HomZ.V;W /.) Our last
proposition is used in the proof of the de Rham theorem in Chapter 18.

Proposition B.57. Let .V˛/˛2A be an indexed family of R-modules. For each R-
module W , there is a canonical isomorphism

HomR

�M

˛2A

V˛;W

�
Š
Y

˛2A

HomR.V˛;W /:

Proof. Define a map ˚ W HomR

�L
˛2A V˛;W

�
!
Q
˛2AHomR.V˛;W / by set-

ting ˚.F /D .F˛/˛2A, where F˛ D F ı �˛ .
To prove that ˚ is surjective, suppose .F˛/˛2A is an arbitrary element ofQ
˛2AHomR.V˛;W /. This just means that for each ˛, F˛ is an R-linear map from

V˛ toW . The characteristic property of the direct sum then guarantees the existence
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of an R-linear map F W
L
˛2A V˛!W satisfying F ı �˛ D F˛ for each ˛, which

is equivalent to ˚.F /D .F˛/˛2A.
To prove that ˚ is injective, suppose that ˚.F /D .F˛/˛2A D 0. By definition

of the zero element of the direct product, this means that F˛ D F ı �˛ is the zero
homomorphism for each ˛. By the uniqueness assertion in Proposition B.55, this
implies that F itself is the zero homomorphism. �



Appendix C
Review of Calculus

In this appendix we summarize the main results from multivariable calculus and real
analysis that are needed in this book. For details on most of the ideas touched on
here, you can consult [Apo74], [Rud76], or [Str00].

Total and Partial Derivatives

For maps between (open subsets of) finite-dimensional vector spaces, the most gen-
eral notion of derivative is the total derivative.

Let V , W be finite-dimensional vector spaces, which we may assume to be en-
dowed with norms. If U � V is an open subset and a 2 U , a map F W U !W is
said to be differentiable at a if there exists a linear map L W V !W such that

lim
v!0

jF.aC v/�F.a/�Lvj

jvj
D 0: (C.1)

The norm in the numerator of this expression is that of W , while the norm in the
denominator is that of V . Because all norms on a finite-dimensional vector space are
equivalent (Exercise B.49), the definition is independent of both choices of norms.

I Exercise C.1. Suppose F W U !W is differentiable at a 2 U . Show that the lin-
ear map L satisfying (C.1) is unique.

If F is differentiable at a, the linear map L satisfying (C.1) is denoted byDF.a/
and is called the total derivative of F at a. Condition (C.1) can also be written

F.aC v/D F.a/CDF.a/vCR.v/; (C.2)

where the remainder term R.v/ D F.a C v/ � F.a/ � DF.a/v satisfies
jR.v/j=jvj ! 0 as v! 0. Thus the total derivative represents the “best linear ap-
proximation” to F.aC v/�F.a/ near a.

I Exercise C.2. Suppose V;W;X are finite-dimensional vector spaces, U � V is an
open subset, a is a point in U , and F;G W U !W and f;g W U !R are maps. Prove
the following statements.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5, © Springer Science+Business Media New York 2013
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(a) If F is differentiable at a, then it is continuous at a.
(b) If F is a constant map, then F is differentiable at a and DF.a/D 0.
(c) If F and G are differentiable at a, then F CG is also, and

D.F CG/.a/DDF.a/CDG.a/:

(d) If f and g are differentiable at a, then fg is also, and

D.fg/.a/D f .a/Dg.a/C g.a/Df .a/:

(e) If f and g are differentiable at a and g.a/¤ 0, then f=g is differentiable at a,
and

D.f=g/.a/D
g.a/Df .a/� f .a/Dg.a/

g.a/2
:

(f) If T W V !W is a linear map, then T is differentiable at every point v 2 V , with
total derivative equal to T itself: DT.v/D T .

(g) If B W V � W ! X is a bilinear map, then B is differentiable at every point
.v;w/ 2 V �W , and

DB.v;w/.x;y/DB.v;y/CB.x;w/:

Proposition C.3 (The Chain Rule for Total Derivatives). Suppose V , W , X
are finite-dimensional vector spaces, U � V and zU � W are open subsets, and
F W U ! zU and G W zU ! X are maps. If F is differentiable at a 2 U and G is
differentiable at F.a/ 2 zU , then G ıF is differentiable at a, and

D.G ıF /.a/DDG
�
F.a/

�
ıDF.a/:

Proof. Let ADDF.a/ and B DDG
�
F.a/

�
. We need to show that

lim
v!0

jG.F.aC v//�G.F.a//�BAvj

jvj
D 0: (C.3)

Let us write b D F.a/ and wD F.aC v/�F.a/. With these substitutions, we can
rewrite the quotient in (C.3) as

jG.bCw/�G.b/�BAvj

jvj
D
jG.bCw/�G.b/�BwCBw �BAvj

jvj

�
jG.bCw/�G.b/�Bwj

jvj
C
jB.w �Av/j

jvj
: (C.4)

Since A and B are linear, Exercise B.52 shows that there are constants C;C 0

such that jAxj � C jxj for all x 2 V , and jByj � C 0jyj for all y 2W . The differen-
tiability of F at a means that for any " > 0, we can ensure that

jw �Avj D jF.aC v/�F.a/�Avj � "jvj

as long as v lies in a small enough neighborhood of 0. Moreover, as v! 0, jwj D
jF.aC v/� F.a/j ! 0 by continuity of F . Therefore, the differentiability of G at
b means that by making jvj even smaller if necessary, we can also achieve

jG.bCw/�G.b/�Bwj � "jwj:
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Putting all of these estimates together, we see that for jvj sufficiently small, (C.4)
is bounded by

"
jwj

jvj
CC 0

jw �Avj

jvj
D "
jw �AvCAvj

jvj
CC 0

jw �Avj

jvj

� "
jw �Avj

jvj
C "
jAvj

jvj
CC 0

jw �Avj

jvj

� "2C "C CC 0";

which can be made as small as desired. �

Partial Derivatives

Now we specialize to maps between Euclidean spaces. Suppose U � Rn is open
and f W U ! R is a real-valued function. For any a D

�
a1; : : : ; an

�
2 U and any

j 2 f1; : : : ; ng, the j th partial derivative of f at a is defined to be the ordinary
derivative of f with respect to xj while holding the other variables fixed:

@f

@xj
.a/D lim

h!0

f .a1; : : : ; aj C h; : : : ; an/� f .a1; : : : ; aj ; : : : ; an/

h

D lim
h!0

f .aC hej /� f .a/

h
;

if the limit exists.
More generally, for a vector-valued function F W U ! Rm, we can write the

coordinates of F.x/ as F.x/ D
�
F 1.x/; : : : ;Fm.x/

�
. This defines m functions

F 1; : : : ;Fm W U ! R called the component functions of F . The partial deriva-
tives of F are defined simply to be the partial derivatives @F i=@xj of its component
functions. The matrix

�
@F i=@xj

�
of partial derivatives is called the Jacobian matrix

of F , and its determinant is called the Jacobian determinant of F .
If F W U !Rm is a function for which each partial derivative exists at each point

in U and the functions @F i=@xj W U ! R so defined are all continuous, then F is
said to be of class C 1 or continuously differentiable. If this is the case, we can
differentiate the functions @F i=@xj to obtain second-order partial derivatives

@2F i

@xk@xj
D

@

@xk

�
@F i

@xj

�
;

if they exist. Continuing this way leads to higher-order partial derivatives: the partial
derivatives of F of order k are the (first) partial derivatives of those of order k � 1,
when they exist.

In general, if U � Rn is an open subset and k � 0, a function F W U ! Rm

is said to be of class C k or k times continuously differentiable if all the partial
derivatives of F of order less than or equal to k exist and are continuous functions
on U . (Thus a function of class C 0 is just a continuous function.) Because existence
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and continuity of derivatives are local properties, clearly F is C k if and only if it
has that property in a neighborhood of each point in U .

A function that is of class C k for every k � 0 is said to be of class C1, smooth,
or infinitely differentiable. If U and V are open subsets of Euclidean spaces, a func-
tion F W U ! V is called a diffeomorphism if it is smooth and bijective and its
inverse function is also smooth.

One consequence of the chain rule is worth noting.

Proposition C.4. Suppose U �Rn and V �Rm are open subsets and F W U ! V

is a diffeomorphism. Then mD n, and for each a 2 U , the total derivative DF.a/
is invertible, with DF.a/�1 DD

�
F �1

��
F.a/

�
.

Proof. Because F �1 ıF D IdU , the chain rule implies that for each a 2U ,

IdRn DD.IdU /.a/DD
�
F �1 ıF

�
.a/DD

�
F �1

��
F.a/

�
ıDF.a/: (C.5)

Similarly, F ı F �1 D IdV implies that DF.a/ ı D
�
F �1

��
F.a/

�
is the identity

on Rm. This implies that DF.a/ is invertible with inverse D
�
F �1

��
F.a/

�
, and

therefore mD n. �
We sometimes need to consider smoothness of functions whose domains are

subsets of Rn that are not open. If A � Rn is an arbitrary subset, a function
F W A!Rm is said to be smooth on A if it admits a smooth extension to an open
neighborhood of each point, or more precisely, if for every x 2 A, there exist an
open subset Ux �Rn containing x and a smooth function zF W Ux!Rm that agrees
with F on Ux \A. The notion of diffeomorphism extends to arbitrary subsets in the
obvious way: given arbitrary subsets A;B �Rn, a diffeomorphism from A to B is
a smooth bijective map f W A!B with smooth inverse.

We are especially concerned with real-valued functions, that is, functions whose
codomain is R. If U � Rn is open, the set of all real-valued functions of class
C k on U is denoted by C k.U /, and the set of all smooth real-valued functions by
C1.U /. Sums, constant multiples, and products of functions are defined pointwise:
for f;g W U !R and c 2R,

.f C g/.x/D f .x/C g.x/;

.cf /.x/D c
�
f .x/

�
;

.fg/.x/D f .x/g.x/:

I Exercise C.5. Let U � Rn be an open subset, and suppose f;g 2 C1.U / and
c 2R.

(a) Show that f C g, cf , and fg are smooth.
(b) Show that these operations turn C1.U / into a commutative ring and a commuta-

tive and associative algebra over R (see p. 624).
(c) Show that if g never vanishes on U , then f=g is smooth.

The following important result shows that for most interesting functions, the or-
der in which we take partial derivatives is irrelevant. For a proof, see [Apo74, Rud76,
Str00].
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Proposition C.6 (Equality of Mixed Partial Derivatives). If U is an open subset
of Rn and F W U ! Rm is a function of class C 2, then the mixed second-order
partial derivatives of F do not depend on the order of differentiation:

@2F i

@xj @xk
D

@2F i

@xk@xj
:

Corollary C.7. If F W U ! Rm is smooth, then the mixed partial derivatives of F
of any order are independent of the order of differentiation. �

Next we study the relationship between total and partial derivatives. Suppose
U � Rn is open and F W U ! Rm is differentiable at a 2 U . As a linear map be-
tween Euclidean spaces Rn and Rm,DF.a/ can be identified with anm�n matrix.
The next proposition identifies that matrix as the Jacobian of F .

Proposition C.8. Let U �Rn be open, and suppose F W U !Rm is differentiable
at a 2U . Then all of the partial derivatives of F at a exist, and DF.a/ is the linear
map whose matrix is the Jacobian of F at a:

DF.a/D

�
@F j

@xi
.a/

�
:

Proof. Let B DDF.a/, and for v 2 Rn small enough that aC v 2 U , let R.v/D
F.a C v/ � F.a/ � Bv. The fact that F is differentiable at a implies that each
component of the vector-valued function R.v/=jvj goes to zero as v! 0. The i th
partial derivative of F j at a, if it exists, is

@F j

@xi
.a/D lim

t!0

F j .aC tei /�F
j .a/

t
D lim
t!0

B
j
i t CR

j .tei /

t

D B
j
i C lim

t!0

Rj .tei /

t
:

The norm of the quotient on the right above is
ˇ̌
Rj .tei /

ˇ̌
=jtei j, which approaches

zero as t! 0. It follows that @F j =@xi .a/ exists and is equal to Bji as claimed. �

I Exercise C.9. Suppose U � Rn is open. Show that a function F W U ! Rm is
differentiable at a 2 U if and only if each of its component functions F 1; : : : ;Fm is
differentiable at a. Show that if this is the case, then

DF.a/D

�
DF 1.a/

:::

DFm.a/

�

:

The preceding exercise implies that for an open interval J �R, a map 	 W J !
Rm is differentiable if and only if its component functions are differentiable in the
sense of one-variable calculus.

The next proposition gives the most important sufficient condition for differen-
tiability; in particular, it shows that all of the usual functions of elementary calculus
are differentiable. For a proof, see [Apo74, Rud76, Str00].
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Proposition C.10. Let U � Rn be open. If F W U ! Rm is of class C 1, then it is
differentiable at each point of U .

For functions between Euclidean spaces, the chain rule can be rephrased in terms
of partial derivatives.

Corollary C.11 (The Chain Rule for Partial Derivatives). Let U �Rn and zU �
Rm be open subsets, and let x D

�
x1; : : : ; xn

�
denote the standard coordinates on

U and y D
�
y1; : : : ; ym

�
those on zU .

(a) A composition of C 1 functions F W U ! zU and G W zU ! Rp is again of class
C 1, with partial derivatives given by

@.Gi ıF /

@xj
.x/D

mX

kD1

@Gi

@yk

�
F.x/

�@F k

@xj
.x/:

(b) If F and G are smooth, then G ıF is smooth.

I Exercise C.12. Prove Corollary C.11.

From the chain rule and induction one can derive formulas for the higher partial
derivatives of a composite function as needed, provided the functions in question
are sufficiently differentiable.

I Exercise C.13. Suppose A�Rn and B �Rm are arbitrary subsets, and F W A!
Rm and G W B!Rp are smooth maps (in the sense that they have smooth extensions
in a neighborhood of each point) such that F.A/� B . Show that G ı F W A!Rp is
smooth.

Now suppose f W U ! R is a smooth real-valued function on an open subset
U � Rn, and a 2 U . For each vector v 2 Rn, we define the directional derivative
of f in the direction v at a to be the number

Dvf .a/D
d

dt

ˇ̌
ˇ̌
tD0

f .aC tv/: (C.6)

(This definition makes sense for any vector v; we do not require v to be a unit vector
as one sometimes does in elementary calculus.)

SinceDvf .a/ is the ordinary derivative of the composite function t 7! aC tv 7!

f .aC tv/, by the chain rule it can be written more concretely as

Dvf .a/D

nX

iD1

vi
@f

@xi
.a/DDf .a/v:

The fundamental theorem of calculus expresses one well-known relationship be-
tween integrals and derivatives. Another is that integrals of smooth functions can
be differentiated under the integral sign. A precise statement is given in the next
theorem; this is not the best that can be proved, but it is more than sufficient for our
purposes. For a proof, see [Apo74, Rud76, Str00].
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Theorem C.14 (Differentiation Under an Integral Sign). Let U �Rn be an open
subset, let a; b 2R, and let f W U � Œa; b�!R be a continuous function such that
the partial derivatives @f=@xi W U � Œa; b�! R exist and are continuous on U �
Œa; b� for i D 1; : : : ; n. Define F W U !R by

F.x/D

Z b

a

f .x; t/ dt:

Then F is of class C 1, and its partial derivatives can be computed by differentiating
under the integral sign:

@F

@xi
.x/D

Z b

a

@f

@xi
.x; t/ dt:

You are probably familiar with Taylor’s theorem, which shows how a sufficiently
smooth function can be approximated near a point by a polynomial. We need a
version of Taylor’s theorem in several variables that gives an explicit integral form
for the remainder term. In order to express it concisely, it helps to introduce some
shorthand notation. For any m-tuple I D .i1; : : : ; im/ of indices with 1� ij � n, we
let jI j Dm denote the number of indices in I , and

@I D
@m

@xi1 � � �@xim
;

.x � a/I D
�
xi1 � ai1

�
� � �
�
xim � aim

�
:

Theorem C.15 (Taylor’s Theorem). Let U �Rn be an open subset, and let a 2U
be fixed. Suppose f 2 C kC1.U / for some k � 0. If W is any convex subset of U
containing a, then for all x 2W ,

f .x/D Pk.x/CRk.x/; (C.7)

where Pk is the kth-order Taylor polynomial of f at a, defined by

Pk.x/D f .a/C

kX

mD1

1

mŠ

X

I WjI jDm

@If .a/.x � a/
I ; (C.8)

and Rk is the kth remainder term, given by

Rk.x/D
1

kŠ

X

I WjI jDkC1

.x � a/I
Z 1

0

.1� t/k@If
�
aC t.x � a/

�
dt: (C.9)

Proof. For k D 0 (where we interpret P0 to mean f .a/), this is just the fundamental
theorem of calculus applied to the function u.t/D f

�
aC t.x � a/

�
, together with

the chain rule. Assuming the result holds for some k, integration by parts applied to
the integral in the remainder term yields

Z 1

0

.1� t/k@If
�
aC t.x � a/

�
dt
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D

�
�
.1� t/kC1

kC 1
@If

�
aC t.x � a/

��tD1

tD0

C

Z 1

0

.1� t/kC1

kC 1

@

@t

�
@If

�
aC t.x � a/

��
dt

D
1

kC 1
@If .a/

C
1

kC 1

nX

jD1

�
xj � aj

�Z 1

0

.1� t/kC1
@

@xj
@If

�
aC t.x � a/

�
dt:

When we insert this into (C.7), we obtain the analogous formula with k replaced by
kC 1. �
Corollary C.16. Suppose U �Rn is an open subset, a 2 U , and f 2 C kC1.U / for
some k � 0. If W is a convex subset of U containing a on which all of the .kC 1/st
partial derivatives of f are bounded in absolute value by a constant M; then for all
x 2W ,

ˇ̌
f .x/�Pk.x/

ˇ̌
�
nkC1M

.kC 1/Š
jx � ajkC1;

where Pk is the kth Taylor polynomial of f at a, defined by (C.8).

Proof. There are nkC1 terms on the right-hand side of (C.9), and each term is
bounded in absolute value by .1=.kC 1/Š/jx � ajkC1M . �

Multiple Integrals

In this section we give a brief review of some basic facts regarding multiple inte-
grals in Rn. For our purposes, the Riemann integral is more than sufficient. Readers
who are familiar with the theory of Lebesgue integration are free to interpret all
of our integrals in the Lebesgue sense, because the two integrals are equal for the
types of functions we consider. For more details on the aspects of integration theory
described here, you can consult [Apo74, Rud76, Str00].

A closed rectangle in Rn is a product set of the form
	
a1; b1



�� � ��

	
an; bn



, for

real numbers ai < bi . Analogously, an open rectangle is a set of the form
�
a1; b1

�
�

� � ��
�
an; bn

�
. IfA is a rectangle of either type, the volume of A, denoted by Vol.A/,

is defined to be the product of the lengths of its component intervals:

Vol.A/D
�
b1 � a1

�
� � �
�
bn � an

�
: (C.10)

A rectangle is called a cube if all of its side lengths
�
bi � ai

�
are equal.

Given a closed interval Œa; b��R, a partition of Œa;b� is a finite sequence P D
.a0; : : : ; ak/ of real numbers such that a D a0 < a1 < � � � < ak D b. Each of the
intervals Œai�1; ai � for i D 1; : : : ; k is called a subinterval of P . Similarly, if AD	
a1; b1



� � � � �

	
an; bn



is a closed rectangle, a partition of A is an n-tuple P D
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.P1; : : : ;Pn/, where each Pi is a partition of
	
ai ; bi



. Each rectangle of the form

I1� � � �� In, where Ij is a subinterval of Pj , is called a subrectangle of P . Clearly,
A is the union of all the subrectangles in any partition, and distinct subrectangles
intersect only on their boundaries.

Suppose A�Rn is a closed rectangle and f W A!R is a bounded function. For
each partition P of A, we define the lower sum of f with respect to P by

L.f;P /D
X

j

�
inf
Rj
f
�

Vol.Rj /;

where the sum is over all the subrectangles Rj of P . Similarly, the upper sum is

U.f;P /D
X

j

�
sup
Rj

f
�

Vol.Rj /:

The lower sum with respect to P is obviously less than or equal to the upper sum
with respect to the same partition. In fact, more is true.

Lemma C.17. Let A�Rn be a closed rectangle, and let f W A!R be a bounded
function. For any pair of partitions P and P 0 of A,

L.f;P /�U.f;P 0/:

Proof. Write P D .P1; : : : ;Pn/ and P 0 D .P 01; : : : ;P
0
n/, and let Q be the partition

Q D .P1 [ P
0
1; : : : ;Pn [ P

0
n/. Each subrectangle of P or P 0 is a union of finitely

many subrectangles of Q. An easy computation shows that

L.f;P /� L.f;Q/�U.f;Q/�U.f;P 0/;

from which the result follows. �

The lower integral of f over A is
Z

A

f dV D sup
˚
L.f;P / W P is a partition of A

�
;

and the upper integral is

Z

A

f dV D inf
˚
U.f;P / W P is a partition of A

�
:

Clearly, both numbers exist, because f is bounded, and Lemma C.17 implies that
the lower integral is less than or equal to the upper integral.

If f W A!R is a bounded function whose upper and lower integrals are equal,
we say that f is (Riemann) integrable over A, and their common value, denoted
by

Z

A

f dV;



Multiple Integrals 651

is called the integral of f over A. The “dV ” in this notation, like the “dx” in the
notation for single integrals, has no meaning on its own; it is just a “closing bracket”
for the integral sign. Other common notations are

Z

A

f or
Z

A

f dx1 � � �dxn or
Z

A

f
�
x1; : : : ; xn

�
dx1 � � �dxn:

In R2, the symbol dV is often replaced by dA.
There is a simple criterion for a bounded function to be Riemann integrable. It

is based on the following notion. A subset X �Rn is said to have measure zero if
for every ı > 0, there exists a countable cover of X by open rectangles fCig such
that

P
i Vol.Ci / < ı. (Those who are familiar with the theory of Lebesgue measure

will notice that this is equivalent to the condition that the Lebesgue measure of X
be equal to zero.)

Proposition C.18 (Properties of Sets of Measure Zero).

(a) If X �Rn has measure zero and x0 2Rn, then the translated subset x0CX D
fx0C a W a 2Xg also has measure zero.

(b) Every subset of a set of measure zero in Rn has measure zero.
(c) A countable union of sets of measure zero in Rn has measure zero.
(d) If k < n, then every subset of Rk (viewed as the set of points x 2 Rn with

xkC1 D � � � D xn D 0) has measure zero in Rn.

I Exercise C.19. Prove Proposition C.18.

Part (d) of this proposition illustrates that having measure zero is a property of
a set in relation to a particular Euclidean space containing it, not of a set in and
of itself. For example, an open interval in the x-axis has measure zero as a subset
of R2, but not when considered as a subset of R1. For this reason, we sometimes
say that a subset of Rn has n-dimensional measure zero if we wish to emphasize
that it has measure zero as a subset of Rn.

The following proposition gives a sufficient condition for a function to be in-
tegrable. It shows, in particular, that every bounded continuous function is inte-
grable.

Proposition C.20 (Lebesgue’s Integrability Criterion). Let A� Rn be a closed
rectangle, and let f W A!R be a bounded function. If the set

S D fx 2A W f is not continuous at xg

has measure zero, then f is integrable.

Proof. Suppose the set S has measure zero, and let " > 0 be given. By defini-
tion of measure zero sets, S can be covered by a countable collection of open
rectangles fCig, the sum of whose volumes is less than ". For each q 2 A X S ,
since f is continuous at q, there is an open rectangle Dq centered at q such that
jf .x/� f .q/j< " for all x 2Dq \A. By shrinking Dq a little, we can arrange that
the same inequality holds for all x 2 xDq \ A. This implies sup xDq f � inf xDq f �
2".
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The collection of all rectangles of the form Ci or Dq is an open cover of A.
By compactness, finitely many of them cover A. Let us relabel these rectangles as
fC1; : : : ;Ck ;D1; : : : ;Dlg. Replacing each Ci or Dj by its intersection with IntA,
we may assume that each xCi and each xDj is contained in A.

Since there are only finitely many rectangles fCi ;Dj g, there is a partition P
of A with the property that each xCi or xDj is equal to a union of subrectangles
of P . (Just use the union of all the endpoints of the component intervals of the
rectangles Ci and Dj to define the partition.) We can divide the subrectangles of
P into two disjoint sets C and D such that every subrectangle in C is contained
in xCi for some i , and every subrectangle in D is contained in xDj for some j .
Then

U.f;P /� L.f;P /

D
X

i

�
sup
Ri

f
�

Vol.Ri /�
X

i

�
inf
Ri
f
�

Vol.Ri /

D
X

Ri2C

�
sup
Ri

f � inf
Ri
f
�

Vol.Ri /C
X

Ri2D

�
sup
Ri

f � inf
Ri
f
�

Vol.Ri /

�
�

sup
A

f � inf
A
f
� X

Ri2C

Vol.Ri /C 2"
X

Ri2D

Vol.Ri /

�
�

sup
A

f � inf
A
f
�
"C 2"Vol.A/:

It follows that
Z

A

f dV �

Z

A

f dV �
�

sup
A

f � inf
A
f
�
"C 2"Vol.A/;

which can be made as small as desired by taking " sufficiently small. This implies
that the upper and lower integrals of f are equal, so f is integrable. �

In fact, Lebesgue’s criterion is both necessary and sufficient for Riemann inte-
grability, but we do not need that.

Now suppose D �Rn is an arbitrary bounded set, and f W D!R is a bounded
function. Define fD W Rn!R by

fD.x/D

(
f .x/; x 2D;

0; x 2Rn XD:
(C.11)

If the integral
Z

A

fD dV (C.12)

exists for some closed rectangle A containing D, then f is said to be integrable
over D. The integral (C.12) is denoted by

R
D f dV and called the integral of f
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over D. It is easy to check that both the integrability of f and the value of the
integral are independent of the rectangle chosen.

In practice, we are interested only in integrals of bounded continuous functions.
However, since we sometimes need to integrate them over domains other than rect-
angles, it is necessary to consider also integrals of discontinuous functions such as
the function fD defined by (C.11). The main reason for proving Proposition C.20
is that it allows us to give a simple description of domains on which all bounded
continuous functions are integrable.

A subset D � Rn is called a domain of integration if D is bounded and @D
has n-dimensional measure zero. It follows from Proposition C.18 that every open
or closed rectangle is a domain of integration, and a finite union of domains of
integration is again a domain of integration.

Proposition C.21. If D �Rn is a domain of integration, then every bounded con-
tinuous real-valued function on D is integrable over D.

Proof. Let f W D! R be bounded and continuous, let fD W Rn! R be the func-
tion defined by (C.11), and let A be a closed rectangle containing D. To prove the
theorem, we need only show that the set of points in A where fD is discontinuous
has measure zero.

If x 2 IntD, then fD D f on a neighborhood of x, so fD is continuous at x.
Similarly, if x 2 Rn X xD, then fD � 0 on a neighborhood of x, so again f is
continuous at x. Thus the set of points where fD is discontinuous is contained
in @D, and therefore has measure zero. �

Of course, ifD is compact, then the assumption that f is bounded in the preced-
ing proposition is superfluous.

If D is a domain of integration, the volume of D is defined to be

Vol.D/D
Z

D

1dV: (C.13)

The integral on the right-hand side is often abbreviated
R
D
dV .

The next two propositions collect some basic facts about volume and integrals of
continuous functions.

Proposition C.22 (Properties of Volume). Let D � Rn be a domain of integra-
tion.

(a) If D is an open or closed rectangle, then the two definitions (C.10) and (C.13)
of Vol.D/ agree.

(b) Vol.D/� 0, with equality if and only if D has measure zero.
(c) If D1; : : : ;Dk are domains of integration whose union is D, then

Vol.D/�Vol.D1/C � � � CVol.Dk/;

with equality if and only if Di \Dj has measure zero for each i ¤ j .
(d) If D1 is a domain of integration contained in D, then Vol.D1/�Vol.D/, with

equality if and only if D XD1 has measure zero.
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Proposition C.23 (Properties of Integrals). Let D �Rn be a domain of integra-
tion, and let f;g W D!R be continuous and bounded.

(a) For any a; b 2R,
Z

D

.af C bg/dV D a

Z

D

f dV C b

Z

D

g dV:

(b) If D has measure zero, then
R
D
f dV D 0.

(c) IfD1; : : : ;Dk are domains of integration whose union isD and whose pairwise
intersections have measure zero, then

Z

D

f dV D

Z

D1

f dV C � � � C

Z

Dk

f dV:

(d) If f � 0 on D, then
R
D f dV � 0, with equality if and only if f � 0 on IntD.

(e) .infD f /Vol.D/�
R
D f dV � .supD f /Vol.D/.

(f)
ˇ̌ R
D f dV

ˇ̌
�
R
D jf jdV .

I Exercise C.24. Prove Propositions C.22 and C.23.

Corollary C.25. A set of measure zero in Rn contains no nonempty open subset.

Proof. Assume for the sake of contradiction that D � Rn has measure zero and
contains a nonempty open subset U . Then U contains a nonempty open rectangle,
which has positive volume and therefore does not have measure zero by Proposi-
tion C.22. But this contradicts the fact that every subset of D has measure zero by
Proposition C.18. �

There are two more fundamental properties of multiple integrals that we need.
The proofs are too involved to be included in this summary, but you can look them
up in [Apo74, Rud76, Str00] if you are interested. Each of these theorems can be
stated in various ways, some stronger than others. The versions we give here are
quite sufficient for our applications.

Theorem C.26 (Change of Variables). Suppose D and E are open domains of
integration in Rn, and G W xD! xE is smooth map that restricts to a diffeomorphism
from D to E . For every continuous function f W xE!R,

Z

E

f dV D

Z

D

.f ıG/ jdetDGj dV:

Theorem C.27 (Fubini’s Theorem). Let AD
	
a1; b1



� � � � �

	
an; bn



be a closed

rectangle in Rn, and let f W A!R be continuous. Then

Z

A

f dV D

Z bn

an

�
� � �

�Z b1

a1
f .x1; : : : ; xn/dx1

�
� � �

�
dxn;

and the same is true if the variables in the iterated integral on the right-hand side
are reordered in any way.
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Integrals of Vector-Valued Functions

If D � Rn is a domain of integration and F W D! Rk is a bounded continuous
vector-valued function, we define the integral of F over D to be the vector in Rk

obtained by integrating F component by component:
Z

D

F dV D

�Z

D

F 1 dV; : : : ;

Z

D

F k dV

�
:

The analogues of parts (a)–(c) of Proposition C.23 obviously hold for vector-valued
integrals, just by applying them to each component. Part (f) holds as well, but re-
quires a bit more work to prove.

Proposition C.28. SupposeD �Rn is a domain of integration and F W D!Rk is
a bounded continuous vector-valued function. Then

ˇ̌
ˇ̌
Z

D

F dV

ˇ̌
ˇ̌�

Z

D

jF jdV: (C.14)

Proof. Let G denote the vector
R
D
F dV 2 Rk . If G D 0, then (C.14) obviously

holds, so we may as well assume that G ¤ 0. We compute

jGj2 D

kX

iD1

�
Gi
�2
D

kX

iD1

Gi
Z

D

F i dV D

kX

iD1

Z

D

GiF i dV D

Z

D

.G � F /dV:

Applying Proposition C.23(f) to the scalar integral
R
D.G � F /dV , we obtain

jGj2 �

Z

D

jG � F j dV �
Z

D

jGj jF j dV D jGj

Z

D

jF j dV:

Dividing both sides of the inequality above by jGj yields (C.14). �

As an application of (C.14), we prove an important estimate for the local behavior
of a C 1 function in terms of its total derivative.

Proposition C.29 (Lipschitz Estimate forC 1 Functions). LetU �Rn be an open
subset, and suppose F W U !Rm is of class C 1. Then F is Lipschitz continuous on
every compact convex subset K � U . The Lipschitz constant can be taken to be
supx2K jDF.x/j.

Proof. Since jDF.x/j is a continuous function of x, it is bounded on the compact
set K . (The norm here is the Frobenius norm on matrices defined in (B.15).) Let
M D supx2K jDF.x/j. For arbitrary a; b 2 K , we have a C t.b � a/ 2 K for all
t 2 I because K is convex. By the fundamental theorem of calculus applied to each
component of F , together with the chain rule,

F.b/�F.a/D

Z 1

0

d

dt
F
�
aC t.b � a/

�
dt
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D

Z 1

0

DF
�
aC t.b � a/

�
.b � a/dt:

Therefore, by (C.14) and Exercise B.48,

ˇ̌
F.b/�F.a/

ˇ̌
�

Z 1

0

ˇ̌
DF

�
aC t.b � a/

�ˇ̌
jb � aj dt

�

Z 1

0

M jb � aj dt DM jb � aj: �

Corollary C.30. If U �Rn is an open subset and F W U !Rm is of class C 1, then
f is locally Lipschitz continuous.

Proof. Each point of U is contained in a ball whose closure is contained in U ,
and Proposition C.29 shows that the restriction of F to such a ball is Lipschitz
continuous. �

Sequences and Series of Functions

Let S � Rn, and suppose we are given functions f W S ! Rm and fi W S ! Rm

for each integer i � 1. The sequence .fi /1iD1 is said to converge pointwise to f if
for each a 2 S and each " > 0, there exists an integer N such that i � N implies
jfi .a/ � f .a/j < ". The sequence is said to converge uniformly to f if N can be
chosen independently of the point a: for each " > 0 there exists N such that i �N
implies jfi .a/� f .a/j< " for all a 2 S . The sequence is uniformly Cauchy if for
every " > 0 there exists N such that i; j � N implies jfi .a/ � fj .a/j < " for all
a 2 S .

Theorem C.31 (Properties of Uniform Convergence). Let S �Rn, and suppose
fi W S!Rm is continuous for each integer i � 1.

(a) If fi ! f uniformly, then f is continuous.
(b) If the sequence .fi /1iD1 is uniformly Cauchy, then it converges uniformly to a

continuous function.
(c) If fi ! f uniformly and S is a compact domain of integration, then

lim
i!1

Z

S

fi dV D

Z

S

f dV:

(d) If S is open, each fi is of classC 1, fi ! f pointwise, and
�
@fi=@x

j
�

converges
uniformly on S as i!1, then @f=@xj exists on S and

@f

@xj
D lim
i!1

@fi

@xj
:

For a proof, see [Apo74, Rud76, Str00].
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Given an infinite series of (real-valued or vector-valued) functions
P1
iD0 fi on

S �Rn, one says the series converges pointwise if the corresponding sequence of
partial sums converges pointwise to some function f :

f .x/D lim
N!1

NX

iD0

fi .x/ for all x 2 S:

We say the series converges uniformly if its partial sums do so.

Proposition C.32 (Weierstrass M -test). Suppose S � Rn, and fi W S ! Rk are
functions. If there exist positive real numbers Mi such that supS jfi j � Mi andP
iMi converges, then

P
i fi converges uniformly on S .

I Exercise C.33. Prove Proposition C.32.

The Inverse and Implicit Function Theorems

The last two theorems in this appendix are central results about smooth functions.
They say that under certain hypotheses, the local behavior of a smooth function is
modeled by the behavior of its total derivative.

Theorem C.34 (Inverse Function Theorem). Suppose U and V are open subsets
of Rn, and F W U ! V is a smooth function. If DF.a/ is invertible at some point
a 2U , then there exist connected neighborhoods U0 � U of a and V0 � V of F.a/
such that F jU0 W U0! V0 is a diffeomorphism.

The proof of this theorem is based on an elementary result about metric spaces,
which we describe first.

Let X be a metric space. A map G W X!X is said to be a contraction if there is
a constant 
 2 .0; 1/ such that d

�
G.x/;G.y/

�
� 
d.x;y/ for all x;y 2X . Clearly,

every contraction is continuous. A fixed point of a map G W X!X is a point x 2X
such that G.x/D x.

Lemma C.35 (Contraction Lemma). LetX be a nonempty complete metric space.
Every contraction G W X!X has a unique fixed point.

Proof. Uniqueness is immediate, for if x and x0 are both fixed points of G, the con-
traction property implies d.x;x0/D d

�
G.x/;G.x0/

�
� 
d.x;x0/, which is possible

only if x D x0.
To prove the existence of a fixed point, let x0 be an arbitrary point in X ,

and define a sequence .xn/1nD0 inductively by xnC1 D G.xn/. For any i � 1 we
have d.xi ; xiC1/ D d

�
G.xi�1/;G.xi /

�
� 
d.xi�1; xi /, and therefore by induc-

tion

d.xi ; xiC1/� 

id.x0; x1/:

If N is a positive integer and j � i �N ,

d.xi ; xj / � d.xi ; xiC1/C d.xiC1; xiC2/C � � � C d.xj�1; xj /
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�
�

i C � � � C 
j�1

�
d.x0; x1/

� 
i
� 1X

nD0


n
�
d.x0; x1/

� 
N
1

1� 

d.x0; x1/:

Since this last expression can be made as small as desired by choosing N large, the
sequence .xn/ is Cauchy and therefore converges to a limit x 2 X . Because G is
continuous,

G.x/DG
�

lim
n!1

xn

�
D lim
n!1

G.xn/D lim
n!1

xnC1 D x;

so x is the desired fixed point. �

Proof of the inverse function theorem. We begin by making some simple modifica-
tions to the function F to streamline the proof. First, the function F1 defined by

F1.x/D F.xC a/�F.a/

is smooth on a neighborhood of 0 and satisfies F1.0/D 0 and DF1.0/DDF.a/;
clearly, F is a diffeomorphism on a connected neighborhood of a if and only if F1
is a diffeomorphism on a connected neighborhood of 0. Second, the function F2 D
DF1.0/

�1ıF1 is smooth on the same neighborhood of 0 and satisfies F2.0/D 0 and
DF2.0/D In; and if F2 is a diffeomorphism in a neighborhood of 0, then so is F1
and therefore also F . Henceforth, replacing F by F2, we assume that F is defined
in a neighborhood U of 0, F.0/D 0, and DF.0/D In. Because the determinant of
DF.x/ is a continuous function of x, by shrinking U if necessary, we may assume
that DF.x/ is invertible for each x 2U .

Let H.x/ D x � F.x/ for x 2 U . Then DH.0/ D In � In D 0. Because the
matrix entries of DH.x/ are continuous functions of x, there is a number ı > 0
such that Bı.0/� U and for all x 2 xBı.0/, we have jDH.x/j � 1

2
. If x;x0 2 xBı.0/,

the Lipschitz estimate for smooth functions (Proposition C.29) implies

jH.x0/�H.x/j � 1
2
jx0 � xj: (C.15)

In particular, taking x0 D 0, this implies

jH.x/j � 1
2
jxj: (C.16)

Since x0 � x D F.x0/�F.x/CH.x0/�H.x/, it follows that

jx0 � xj �
ˇ̌
F.x0/�F.x/

ˇ̌
C
ˇ̌
H.x0/�H.x/

ˇ̌
�
ˇ̌
F.x0/�F.x/

ˇ̌
C 1

2
jx0 � xj;

and rearranging gives

jx0 � xj � 2jF.x0/�F.x/j (C.17)

for all x;x0 2 xBı.0/. In particular, this shows that F is injective on xBı.0/.
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Now let y 2 Bı=2.0/ be arbitrary. We will show that there exists a unique point
x 2 Bı.0/ such that F.x/ D y. Let G.x/ D y CH.x/ D y C x � F.x/, so that
G.x/D x if and only if F.x/D y. If jxj � ı, (C.16) implies

jG.x/j � jyj C jH.x/j<
ı

2
C
1

2
jxj � ı; (C.18)

so G maps xBı.0/ to itself. It then follows from (C.15) that jG.x/�G.x0/j D
jH.x/�H.x0/j � 1

2
jx�x0j, soG is a contraction. Since xBı.0/ is a complete metric

space (see Example A.6), the contraction lemma implies that G has a unique fixed
point x 2 xBı.0/. From (C.18), jxj D jG.x/j< ı, so in fact x 2 Bı.0/, thus proving
the claim.

Let V0 D Bı=2.0/ and U0 D Bı.0/\ F �1.V0/. Then U0 is open in Rn, and the
argument above shows that F W U0! V0 is bijective, so F �1 W V0! U0 exists. Sub-
stituting x D F �1.y/ and x0 D F �1.y0/ into (C.17) shows that F �1 is continuous.
Thus F W U0! V0 is a homeomorphism, and it follows that U0 is connected because
V0 is.

The only thing that remains to be proved is that F �1 is smooth. If we knew it
were smooth, Proposition C.4 would imply that D

�
F �1

�
.y/ D DF.x/�1, where

x D F �1.y/. We begin by showing that F �1 is differentiable at each point of V0,
with total derivative given by this formula.

Let y 2 V0 be arbitrary, and set x D F �1.y/ and LDDF.x/. We need to show
that

lim
y0!y

F �1.y0/�F �1.y/�L�1.y0 � y/

jy0 � yj
D 0:

Given y0 2 V0 X fyg, write x0 D F �1.y0/ 2 U0 X fxg. Then

F �1.y0/�F �1.y/�L�1.y0 � y/

jy0 � yj

DL�1
�
L.x0 � x/� .y0 � y/

jy0 � yj

�

D
jx0 � xj

jy0 � yj
L�1

�
�
F.x0/�F.x/�L.x0 � x/

jx0 � xj

�
:

The factor jx0 � xj=jy0 � yj above is bounded thanks to (C.17), and because L�1

is linear and therefore bounded (Exercise B.52), the norm of the second factor is
bounded by a constant multiple of

jF.x0/�F.x/�L.x0 � x/j

jx0 � xj
: (C.19)

As y0! y, it follows that x0! x by continuity of F �1, and then (C.19) goes to
zero because L D DF.x/ and F is differentiable. This completes the proof that
F �1 is differentiable.
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By Proposition C.8, the partial derivatives of F �1 are defined at each point
y 2 V0. Observe that the formula D

�
F �1

�
.y/DDF

�
F �1.y/

�
�1 implies that the

matrix-valued function y 7!D
�
F �1

�
.y/ can be written as the composition

y
F �1� F �1.x/

DF� DF
�
F �1.y/

� i� DF
�
F �1.y/

�
�1; (C.20)

where i is matrix inversion. In this composition, F �1 is continuous; DF is smooth
because its component functions are the partial derivatives of F ; and i is smooth
because Cramer’s rule expresses the entries of an inverse matrix as rational func-
tions of the entries of the matrix. Because D

�
F �1

�
is a composition of continuous

functions, it is continuous. Thus the partial derivatives of F �1 are continuous, so
F �1 is of class C 1.

Now assume by induction that we have shown that F �1 is of class C k . This
means that each of the functions in (C.20) is of class C k . Because D

�
F �1

�
is a

composition of C k functions, it is itself C k ; this implies that the partial derivatives
of F �1 are of class C k , so F �1 itself is of class C kC1. Continuing by induction,
we conclude that F �1 is smooth. �
Corollary C.36. Suppose U �Rn is an open subset, and F W U !Rn is a smooth
function whose Jacobian determinant is nonzero at every point in U .

(a) F is an open map.
(b) If F is injective, then F W U ! F.U / is a diffeomorphism.

Proof. For each a 2 U , the fact that the Jacobian determinant of F is nonzero im-
plies that DF.a/ is invertible, so the inverse function theorem implies that there
exist open subsets Ua � U containing a and Va � F.U / containing F.a/ such that
F restricts to a diffeomorphism F jUa W Ua! Va. In particular, this means that each
point of F.U / has a neighborhood contained in F.U /, so F.U / is open. If U0 � U
is an arbitrary open subset, the same argument with U replaced by U0 shows that
F.U0/ is also open; this proves (a). If in addition F is injective, then the inverse
map F �1 W F.U /! U exists for set-theoretic reasons; on a neighborhood of each
point F.a/ 2 F.U / it is equal to the inverse of F jUa , so it is smooth. �

The next two examples illustrate the use of the preceding corollary.

Example C.37 (Polar Coordinates). As you know from calculus, polar coor-
dinates .r; �/ in the plane are defined implicitly by the relations x D r cos� ,
y D r sin� . The map F W .0;1/ �R! R2 defined by F.r; �/D .r cos�; r sin�/
is smooth and has Jacobian determinant equal to r , which is nonzero everywhere
on the domain. Thus, Corollary C.36 shows that the restriction of F to any open
subset on which it is injective is a diffeomorphism onto its image. One such sub-
set is f.r; �/ W r > 0; �� < � < �g, which is mapped bijectively by F onto the
complement of the nonpositive part of the x-axis. //

Example C.38 (Spherical Coordinates). Similarly, spherical coordinates on R3

are the functions .�; '; �/ defined by the relations

x D � sin' cos�;
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y D � sin' sin�;

z D � cos':

Geometrically, � is the distance from the origin, ' is the angle from the positive
z-axis, and � is the angle from the x > 0 half of the .x; z/-plane. If we define
G W .0;1/ � .0;�/ �R! R3 by G.�;'; �/D .� sin' cos�; � sin' sin�; � cos'/,
a computation shows that the Jacobian determinant of G is �2 sin' ¤ 0. Thus, the
restriction of G to any open subset on which it is injective is a diffeomorphism onto
its image. One such subset is

˚
.�; '; �/ W � > 0; 0 < ' < �;�� < � < �

�
:

Notice how much easier it is to argue this way than to try to construct an inverse
map explicitly out of inverse trigonometric functions. //

I Exercise C.39. Verify the claims in the preceding two examples.

The next result is one of the most important consequences of the inverse function
theorem. It gives conditions under which a level set of a smooth function is locally
the graph of a smooth function.

Theorem C.40 (Implicit Function Theorem). Let U �Rn �Rk be an open sub-
set, and let .x; y/ D

�
x1; : : : ; xn; y1; : : : ; yk

�
denote the standard coordinates on

U . Suppose ˚ W U !Rk is a smooth function, .a; b/ 2 U , and c D ˚.a; b/. If the
k � k matrix

�
@˚ i

@yj
.a; b/

�

is nonsingular, then there exist neighborhoods V0 �Rn of a and W0 �Rk of b and
a smooth function F W V0!W0 such that ˚�1.c/ \ .V0 �W0/ is the graph of F ,
that is, ˚.x;y/D c for .x; y/ 2 V0 �W0 if and only if y D F.x/.

Proof. Consider the smooth function � W U ! Rn � Rk defined by �.x;y/ D�
x;˚.x;y/

�
. Its total derivative at .a; b/ is

D�.a; b/D

�
In 0

@˚ i

@xj
.a; b/

@˚ i

@yj
.a; b/

�
;

which is nonsingular because it is block lower triangular and the two blocks on the
main diagonal are nonsingular. Thus by the inverse function theorem there exist
connected neighborhoods U0 of .a; b/ and Y0 of .a; c/ such that � W U0! Y0 is
a diffeomorphism. Shrinking U0 and Y0 if necessary, we may assume that U0 D
V �W is a product neighborhood.

Writing ��1.x; y/ D
�
A.x;y/;B.x;y/

�
for some smooth functions A and B ,

we compute

.x; y/D �
�
��1.x; y/

�
D �

�
A.x;y/;B.x;y/

�

D
�
A.x;y/;˚

�
A.x;y/;B.x;y/

��
: (C.21)
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Comparing the first components in this equation, we find that A.x;y/D x, so ��1

has the form ��1.x; y/D
�
x;B.x;y/

�
.

Now let V0 D fx 2 V W .x; c/ 2 Y0g and W0 DW , and define F W V0!W0 by
F.x/DB.x; c/. Comparing the second components in (C.21) yields

c D˚
�
x;B.x; c/

�
D˚

�
x;F.x/

�

whenever x 2 V0, so the graph of F is contained in ˚�1.c/. Conversely, suppose
.x; y/ 2 V0 �W0 and ˚.x;y/D c. Then �.x;y/D

�
x;˚.x;y/

�
D .x; c/, so

.x; y/D ��1.x; c/D
�
x;B.x; c/

�
D
�
x;F.x/

�
;

which implies that y D F.x/. This completes the proof. �



Appendix D
Review of Differential Equations

The theory of ordinary differential equations (ODEs) underlies much of the study of
smooth manifolds. In this appendix, we review both the theoretical and the practical
aspects of the subject. Since we need to work only with first-order equations and
systems, we concentrate our attention on those. For more detail, consult any good
ODE textbook, such as [BR89] or [BD09].

Existence, Uniqueness, and Smoothness

Here is the general setting in which ODEs appear in this book: we are given n real-
valued continuous functions V 1; : : : ; V n defined on some open subset W �RnC1,
and the goal is to find differentiable real-valued functions y1; : : : ; yn solving the
following initial value problem:

Pyi .t/D V i
�
t; y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; n; (D.1)

yi .t0/D c
i ; i D 1; : : : ; n; (D.2)

where .t0; c1; : : : ; cn/ is an arbitrary point in W . (Here and elsewhere in the book,
we use a dot to denote an ordinary derivative with respect to t whenever conve-
nient, primarily when there are superscripts that would make the prime notation
cumbersome.)

The fundamental fact about ordinary differential equations is that for smooth
equations, there always exists a unique solution to the initial value problem, at least
for a short time, and the solution is a smooth function of the initial conditions as
well as time. The existence and uniqueness parts of this theorem are proved in most
ODE textbooks, but the smoothness part is often omitted. Because this result is so
fundamental to smooth manifold theory, we give a complete proof here.

Most of our applications of the theory are confined to the following special case:
if the functions V i on the right-hand side of (D.1) do not depend explicitly on t ,
the system is said to be autonomous; otherwise, it is nonautonomous. We begin by
stating and proving our main theorem in the autonomous case. Afterwards, we show
how the general case follows from this one.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218,
DOI 10.1007/978-1-4419-9982-5, © Springer Science+Business Media New York 2013
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Theorem D.1 (Fundamental Theorem for Autonomous ODEs). Suppose U �
Rn is open, and V W U !Rn is a smooth vector-valued function. Consider the ini-
tial value problem

Pyi .t/D V i
�
y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; n; (D.3)

yi .t0/D c
i ; i D 1; : : : ; n; (D.4)

for arbitrary t0 2R and c D .c1; : : : ; cn/ 2 U .

(a) EXISTENCE: For any t0 2 R and x0 2 U , there exist an open interval J0 con-
taining t0 and an open subset U0 � U containing x0 such that for each c 2U0,
there is a C 1 map y W J0!U that solves (D.3)–(D.4).

(b) UNIQUENESS: Any two differentiable solutions to (D.3)–(D.4) agree on their
common domain.

(c) SMOOTHNESS: Let J0 and U0 be as in (a), and let � W J0 �U0! U be the map
defined by �.t; x/D y.t/, where y W J0! U is the unique solution to (D.3) with
initial condition y.t0/D x. Then � is smooth.

The existence, uniqueness, and smoothness parts of this theorem will be proved
separately below. The following comparison theorem is useful in the proofs to
follow.

Theorem D.2 (ODE Comparison Theorem). Let J �R be an open interval, and
suppose the differentiable function u W J ! Rn satisfies the following differential
inequality for all t 2 J :

ju0.t/j � f
�
ju.t/j

�
;

where f W Œ0;1/! Œ0;1/ is Lipschitz continuous. If for some t0 2 J , v W Œ0;1/!
Œ0;1/ is a differentiable real-valued function satisfying the initial-value problem

v0.t/D f
�
v.t/

�
;

v.0/D ju.t0/j;

then the following inequality holds for all t 2 J :

ju.t/j � v
�
jt � t0j

�
: (D.5)

Proof. Assume first that t0 D 0, and let JC D ft 2 J W t � 0g. We begin by proving
that (D.5) holds for all t 2 JC. On the open subset of JC where ju.t/j > 0, ju.t/j
is a differentiable function of t , and the Cauchy–Schwarz inequality shows that

d

dt
ju.t/j D

d

dt

�
u.t/ � u.t/

�1=2
D
1

2

�
u.t/ � u.t/

��1=2�
2u.t/ � u0.t/

�

�
1

2
ju.t/j�1

�
2 ju.t/j

ˇ̌
u0.t/

ˇ̌�
D
ˇ̌
u0.t/

ˇ̌
� f

�
ju.t/j

�
:

Let A be a Lipschitz constant for f , and consider the continuous function
w W JC!R defined by

w.t/D e�At
�
ju.t/j � v.t/

�
:



Existence, Uniqueness, and Smoothness 665

Then w.0/D 0, and (D.5) for t 2 JC is equivalent to w.t/� 0.
At any t 2 JC such that w.t/ > 0 (and therefore ju.t/j> v.t/� 0), w is differ-

entiable and satisfies

w0.t/D �Ae�At
�
ju.t/j � v.t/

�
C e�At

d

dt

�
ju.t/j � v.t/

�

� �Ae�At
�
ju.t/j � v.t/

�
C e�At

�
f
�
ju.t/j

�
� f

�
v.t/

��

� 0;

where the last inequality follows from the Lipschitz estimate for f .
Now suppose there is some t1 2 JC such that w.t1/ > 0. Let

� D sup
˚
t 2 Œ0; t1� Ww.t/� 0

�
:

Then w.�/D 0 by continuity, and w.t/ > 0 for t 2 .�; t1�. Since w is continuous on
Œ�; t1� and differentiable on .�; t1/, the mean value theorem implies that there must
exist t 2 .�; t1/ such thatw.t/ > 0 andw0.t/ > 0. But this contradicts the calculation
above, which showed that w0.t/� 0 whenever w.t/ > 0, thus proving that w.t/� 0
for all t 2 JC.

Now, the result for t � 0 follows easily by substituting �t for t in the argument
above. Finally, for the general case in which t0 ¤ 0, we simply apply the above
argument to the function zu.t/D u.t C t0/ on the interval zJ D ft W t C t0 2 J g. �
Remark. In the statement of the comparison theorem, we have assumed for simplic-
ity that both f and v are defined for all nonnegative t , but these hypotheses can be
weakened: the proof goes through essentially without modification as long as v is
defined on an interval Œ0; b/ large enough that J � .t0� b; t0C b/, and f is defined
on some interval that contains ju.t/j and v.t/ for all t 2 J .

Theorem D.3 (Existence of ODE Solutions). Let U �Rn be an open subset, and
suppose V W U !Rn is locally Lipschitz continuous. Let .t0; x0/ 2R�U be given.
There exist an open interval J0 � R containing t0, an open subset U0 � U con-
taining x0, and for each c 2 U0, a C 1 map y W J0! U satisfying the initial value
problem (D.3)–(D.4).

Proof. By shrinking U if necessary, we may assume that V is Lipschitz continuous
on U . We begin by showing that the system (D.3)–(D.4) is equivalent to a certain
integral equation. Suppose y is any solution to (D.3)–(D.4) on some interval J0
containing t0. Because y is differentiable, it is continuous, and then the fact that the
right-hand side of (D.3) is a continuous function of t implies that y is of class C 1.
Integrating (D.3) with respect to t and applying the fundamental theorem of calculus
shows that y satisfies the following integral equation:

yi .t/D ci C

Z t

t0

V i
�
y.s/

�
ds: (D.6)

Conversely, if y W J0! U is a continuous map satisfying (D.6), then the fundamen-
tal theorem of calculus implies that y satisfies (D.3)–(D.4) and therefore is actually
of class C 1.
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This motivates the following definition. Suppose J0 is an open interval contain-
ing t0. For any continuous map y W J0! U , we define a new map Iy W J0! Rn

by

Iy.t/D cC

Z t

t0

V
�
y.s/

�
ds: (D.7)

Then we are led to seek a fixed point for I in a suitable metric space of maps.
Let C be a Lipschitz constant for V , so that

ˇ̌
V.y/� V

�
zy
�ˇ̌
� C

ˇ̌
y � zy

ˇ̌
; y; zy 2U: (D.8)

Given t0 2R and x0 2 U , choose r > 0 small enough that xBr .x0/� U . Let M be
the supremum of jV j on the compact set xBr .x0/. Choose ı > 0 and " > 0 small
enough that

ı <
r

2
; " <min

�
r

2M
;
1

C

�
;

and set J0 D .t0 � "; t0 C "/ � R and U0 D Bı.x0/ � U . For any c 2 U0, let Mc

denote the set of all continuous maps y W J0 ! xBr .x0/ satisfying y.t0/ D c. We
define a metric on Mc by

d.y; zy/D sup
t2J0

ˇ̌
y.t/� zy.t/

ˇ̌
:

Any sequence of maps in Mc that is Cauchy in this metric is uniformly Cauchy, and
thus converges to a continuous limit y. Clearly, the conditions that y take its values
in xBr .x0/ and y.t0/ D c are preserved in the limit. Therefore, Mc is a complete
metric space.

We wish to define a map I W Mc !Mc by formula (D.7). The first thing we
need to verify is that I really does map Mc into itself. It is clear from the definition
that Iy.t0/D c and Iy is continuous (in fact, it is differentiable by the fundamental
theorem of calculus). Thus, we need only check that Iy takes its values in xBr .x0/.
If y 2Mc , then for any t 2 J0,

jIy.t/� x0j D

ˇ̌
ˇ̌cC

Z t

t0

V
�
y.s/

�
ds � x0

ˇ̌
ˇ̌

� jc � x0j C

Z t

t0

ˇ̌
V
�
y.s/

�ˇ̌
ds

< ıCM"< r

by our choice of ı and ".
Next we check that I is a contraction (see p. 657). If y; zy 2Mc , then

d
�
Iy; I zy

�
D sup
t2J0

ˇ̌
ˇ
ˇ

Z t

t0

V
�
y.s/

�
ds �

Z t

t0

V
�
zy.s/

�
ds

ˇ̌
ˇ
ˇ

� sup
t2J0

Z t

t0

ˇ̌
V
�
y.s/

�
� V

�
zy.s/

�ˇ̌
ds
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� sup
t2J0

Z t

t0

C
ˇ̌
y.s/� zy.s/

ˇ̌
ds � C"d

�
y; zy

�
:

Because we have chosen " so that C" < 1, this shows that I is a contraction. By the
contraction lemma (Lemma C.35), I has a fixed point y 2Mc , which is a solution
to (D.6) and thus also to (D.3)–(D.4). �

Theorem D.4 (Uniqueness of ODE Solutions). Let U � Rn be an open subset,
and suppose V W U !Rn is locally Lipschitz continuous. For any t0 2R and c 2U ,
any two differentiable solutions to (D.3)–(D.4) are equal on their common domain.

Proof. Suppose first that y; zy W J0! U are two differentiable functions that both
satisfy (D.3) on the same open interval J0 � R, but not necessarily with the same
initial conditions. Let J1 be a bounded open interval containing t0 such that xJ1 � J0.
The union of y

�
xJ1
�

and zy
�
xJ1
�

is a compact subset of U , and Proposition A.48(b)
shows that there is a Lipschitz constant C for V on that set. Thus

ˇ̌
ˇ̌ d
dt

�
zy.t/� y.t/

�
ˇ̌
ˇ̌D

ˇ
ˇV
�
zy.t/

�
� V

�
y.t/

�ˇˇ� C
ˇ
ˇzy.t/� y.t/

ˇ
ˇ:

Applying the ODE comparison theorem (Theorem D.2) with u.t/ D zy.t/ � y.t/,
f .v/D Cv, and v.t/D eCt

ˇ̌
zy.t0/� y.t0/

ˇ̌
, we conclude that

ˇ̌
zy.t/� y.t/

ˇ̌
� eC jt�t0j

ˇ̌
zy.t0/� y.t0/

ˇ̌
; t 2 xJ1: (D.9)

Thus, y.t0/D zy.t0/ implies y � zy on all of xJ1. Since every point of J0 is contained
in some such subinterval J1, it follows that y � zy on all of J0. �

Theorem D.5 (Smoothness of ODE Solutions). Suppose U �Rn is an open sub-
set and V W U ! Rn is locally Lipschitz continuous. Suppose also that U0 � U is
an open subset, J0 �R is an open interval containing t0, and � W J0 � U0! U is
a map such that for each x 2 U0, y.t/ D �.t; x/ solves the initial value problem
(D.3)–(D.4) with initial condition c D x. If V is of class C k for some k � 0, then
so is � .

Proof. Let .t1; x1/ 2 J0 �U0 be arbitrary. It suffices to prove that � is C k on some
neighborhood of .t1; x1/. We prove this claim by induction on k.

Let J1 be a bounded open interval containing t0 and t1 such that xJ1 � J0. Be-
cause the restriction of � to J0 � fx1g is an integral curve of V , it is continuous and
therefore the set K D �

�
xJ1 � fx1g

�
is compact. Thus, there exists c > 0 such that

xB2c.y/ � U for every y 2 K . Let W D
S
y2K Bc.y/, so that W is a precompact

neighborhood of K in U . The restriction of V to W is bounded by compactness,
and is Lipschitz continuous by Proposition A.48(b). Let C be a Lipschitz constant
for V on W , and define constants M and T by

M D sup
W

jV j ; T D sup
t2 xJ1

jt � t0j :
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For any x; zx 2 W , both t 7! �.t; x/ and t 7! �.t; zx/ are integral curves of V for
t 2 J1. As long as both curves stay in W , (D.9) implies

j�.t; x/� �.t; zx/j � eCT jzx � xj: (D.10)

Choose r > 0 such that 2reCT < c, and let U1 D Br .x1/ and U2 D B2r .x1/.
We will prove that � maps xJ1 � xU2 into W . Assume not, which means there is
some .t2; x2/ 2 xJ1 � xU2 such that �.t2; x2/ …W ; for simplicity, assume t2 > t0. Let
� be the infimum of times t > t0 in J1 such that �.t; x2/ …W . By continuity, this
means �.�; x2/ 2 @W . But because both �.t; x1/ and �.t; x2/ are inW for t 2 Œt0; � �,
(D.10) yields j�.�; x2/ � �.�; x1/j � 2reCT < c, which means that �.�; x2/ 2W ,
a contradiction. This proves the claim.

For the k D 0 step, we need to show that � is continuous on xJ1 � xU1. It follows
from (D.10) that it is Lipschitz continuous there as a function of x. We need to show
that it is jointly continuous in .t; x/.

Let .t; x/ 2 xJ1� xU1 be arbitrary. Since every solution to the initial value problem
satisfies the integral equation (D.6), we find that

� i .t; x/D xi C

Z t

t0

V i
�
�.s; x/

�
ds; (D.11)

and therefore (assuming for simplicity that t1 � t ),

j� .t1; x1/� �.t; x/j � jx1 � xj C

ˇ̌
ˇ̌
Z t1

t0

V
�
� .s; x1/

�
ds �

Z t

t0

V
�
�.s; x/

�
ds

ˇ̌
ˇ̌

� jx1 � xj C

Z t

t0

ˇ̌
V
�
� .s; x1/

�
� V

�
�.s; x/

�ˇ̌
ds

C

Z t1

t

ˇ̌
V
�
� .s; x1/

�ˇ̌
ds

� jx1 � xj CC

Z t

t0

j� .s; x1/� �.s; x/j dsC

Z t1

t

M ds

� jx1 � xj CCTe
CT jx1 � xj CM jt1 � t j :

It follows that � is continuous at .t1; x1/.
Next we tackle the k D 1 step, which is the hardest part of the proof. Suppose

that V is of class C 1, and let xJ1, xU1 be defined as above. Expressed in terms of � ,
the initial value problem (D.3)–(D.4) with c D x reads

@� i

@t
.t; x/D V i

�
�.t; x/

�
;

� i .t0; x/D x
i :

(D.12)

Because we know that � is continuous by the argument above, this shows that
@� i=@t is continuous. We will prove that for each j , @� i=@xj exists and is con-
tinuous on xJ1 � xU1.
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For any real number h such that 0 < jhj< r and any indices i; j 2 f1; : : : ; ng, we
let .h/ij W xJ1 � xU1!R be the difference quotient

.h/
i
j .t; x/D

� i .t; xC hej /� �
i .t; x/

h
:

Then @� i=@xj .t; x/D limh!0.h/
i
j .t; x/ if the limit exists. In fact, we will show

that .h/ij converges uniformly on xJ1 � xU1 as h! 0, from which it follows that

@� i=@xj exists and is continuous there, because it is a uniform limit of continuous
functions. Leth W xJ1� xU1!M.n;R/ be the matrix-valued function whose matrix
entries are .h/ij .t; x/. Note that (D.10) implies j.h/ij .t; x/j � e

CT for each i
and j , and thus

jh.t; x/j � ne
CT ; (D.13)

where the norm on the left-hand side is the Frobenius norm on matrices.
Let us compute the derivative of .h/ij with respect to t :

@

@t
.h/

i
j .t; x/D

1

h

�
@� i

@t
.t; xC hej /�

@� i

@t
.t; x/

�

D
1

h

�
V i
�
�.t; xC hej /

�
� V i

�
�.t; x/

��
: (D.14)

The mean value theorem applied to the C 1 function

u.s/D V i
�
.1� s/�.t; x/C s�.t; xC hej /

�

implies that there is some c 2 .0; 1/ such that u.1/� u.0/D u0.c/. If we substitute
y0 D .1� c/�.t; x/C c�.t; x C hej / (a point on the line segment between �.t; x/
and �.t; xC hej /), this becomes

V i
�
�.t; xC hej /

�
� V i

�
�.t; x/

�
D

nX

kD1

@V i

@yk
.y0/

�
�k.t; xC hej /� �

k.t; x/
�

D h

nX

kD1

@V i

@yk
.y0/.h/

k
j .t; x/:

Inserting this into (D.14) yields

@

@t
.h/

i
j .t; x/D

nX

kD1

@V i

@yk
.y0/.h/

k
j .t; x/:
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Thus for any sufficiently small nonzero real numbers h; zh,

@

@t

�
.h/

i
j .t; x/� .zh/

i
j .t; x/

�

D

nX

kD1

@V i

@yk
.y0/.h/

k
j .t; x/�

nX

kD1

@V i

@yk
.zy0/.zh/

k
j .t; x/

D

nX

kD1

@V i

@yk
.y0/

�
.h/

k
j .t; x/� .zh/

k
j .t; x/

�

C

nX

kD1

�
@V i

@yk
.y0/�

@V i

@yk

�
zy0
��
.zh/

k
j .t; x/; (D.15)

where zy0 is defined similarly to y0, but with zh in place of h.
Now let " > 0 be given. Because the continuous functions @V i=@yk are uni-

formly continuous on xU1 (Proposition A.48(a)), there exists ı > 0 such that the
following inequality holds whenever jy1 � y2j< ı:

ˇ̌
ˇ̌@V

i

@yk
.y1/�

@V i

@yk
.y2/

ˇ̌
ˇ̌< ":

Suppose jhj and
ˇ̌
zh
ˇ̌

are both less than ıe�CT =n. Then we have

jy0 � �.t; x/j D cj�.t; xC hej /� �.t; x/j � cjhjjh.t; x/j< ı; (D.16)

and similarly
ˇ̌
zy0 � �.t; x/

ˇ̌
< ı, so

ˇ̌
ˇ̌@V

i

@yk
.y0/�

@V i

@yk

�
zy0
�
ˇ̌
ˇ̌

�

ˇ̌
ˇ̌@V

i

@yk
.y0/�

@V i

@yk

�
�.t; x/

�
ˇ̌
ˇ̌C

ˇ̌
ˇ̌@V

i

@yk

�
�.t; x/

�
�
@V i

@yk

�
zy0
�
ˇ̌
ˇ̌< 2": (D.17)

Inserting (D.17) and (D.13) into (D.15), we find that the matrix-valued function
h �zh satisfies the following differential inequality:

ˇ̌
ˇ̌ @
@t

�
h.t; x/�zh.t; x/

�ˇ̌
ˇ̌�Ejh.t; x/�zh.t; x/j C 2"ne

CT ;

where E is the supremum of jDV j on xU1. Note that � i .t0; x/ D xi implies that
.h/

i
j satisfies the following initial condition:

.h/
i
j .t0; x/D

� i .t0; xC hej /� �
i .t0; x/

h
D
.xi C hıij /� x

i

h
D ıij : (D.18)

Thus, h.t0; x/ �zh.t0; x/D 0, and we can apply the ODE comparison theorem
with f .v/D Ev C B and v.t/D .B=E/

�
eEt � 1

�
(where B D 2"neCT ) to con-
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clude that

ˇ̌
h.t; x/�zh.t; x/

ˇ̌
�
2"neCT

E

�
eE jt�t0j � 1

�
�
2"neCT

E

�
eET � 1

�
: (D.19)

Since the expression on the right can be made as small as desired by choosing h and
zh sufficiently small, this shows that for each i and j , and any sequence hk ! 0,
the sequence of functions

�
.hk /

i
j

�1
kD1

is uniformly Cauchy and therefore uni-
formly convergent to a continuous limit function. It follows easily from (D.19)
that the limit is independent of the choice of .hk/, so the limit is in fact equal to
limh!0.h/

i
j .t; x/, which is @� i=@xj .t; x/ by definition. This shows that � i has

continuous first partial derivatives, and completes the proof of the k D 1 case.
Now assume that the theorem is true for some k � 1, and suppose V is of class

C kC1. By the inductive hypothesis, � is of class C k , and therefore by (D.12),
@� i=@t is also C k . We can differentiate under the integral sign in (D.11) to obtain

@� i

@xj
.t; x/D ıij C

nX

kD1

Z t

t0

@V i

@yk

�
�.s; x/

�@�k

@xj
.s; x/ds:

By the fundamental theorem of calculus, this implies that @� i=@xj satisfies the dif-
ferential equation

@

@t

@� i

@xj
.t; x/D

nX

kD1

@V i

@yk

�
�.t; x/

�@�k

@xj
.t; x/:

Consider the following initial value problem for the nC n2 unknown functions�
˛i ; ˇij

�
:

P̨ i .t/D V i
�
˛.t/

�
; ˛i .t0/D a

i ;

P̌i
j .t/D

nX

kD1

@V i

@yk

�
˛.t/

�
ˇkj .t/; ˇij .t0/D b

i
j :

The functions on the right-hand side of this system are C k functions of
�
˛i ; ˇij

�
,

so the inductive hypothesis implies that its solutions are C k functions of
�
t; ai ; bij

�
.

The discussion in the preceding paragraph shows that ˛i .t/D � i .t; x/ and ˇij .t/D

@� i=@xj .t; x/ solve this system with initial conditions ai D xi , bij D ı
i
j . This shows

that @� i=@xj is a C k function of .t; x/, so � itself is of class C kC1, thus completing
the induction. �

Proof of the fundamental theorem. Suppose U � Rn is open and V W U ! Rn is
smooth. Let t0 2 R and x0 2 U be arbitrary. Because V is smooth, it is locally
Lipschitz continuous by Corollary C.30, so the theorems of this appendix apply.
Theorem D.3 shows that there exist neighborhoods J0 of t0 and U0 of x0 such that
for each c 2 U0, there is a C 1 solution y W J0 ! U to (D.3)–(D.4). Uniqueness
of solutions is an immediate consequence of Theorem D.4. Finally, Theorem D.5
shows that the solution is C k for every k as a function of .t; c/, so it is smooth. �
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Nonautonomous Systems

Many applications of ODEs require the consideration of nonautonomous systems.
In this section we show how the main theorem can be extended to cover the nonau-
tonomous case.

Theorem D.6 (Fundamental Theorem for Nonautonomous ODEs). Let J �R
be an open interval and U �Rn be an open subset, and let V W J � U !Rn be a
smooth vector-valued function.

(a) EXISTENCE: For any s0 2 J and x0 2 U , there exist an open interval J0 � J
containing s0 and an open subset U0 � U containing x0, such that for each
t0 2 J0 and c D .c1; : : : ; cn/ 2 U0, there is a C 1 map y W J0! U that solves
(D.1)–(D.2).

(b) UNIQUENESS: Any two differentiable solutions to (D.1)–(D.2) agree on their
common domain.

(c) SMOOTHNESS: Let J0 and U0 be as in (a), and define a map � W J0 � J0 �
U0! U by letting �.t; t0; c/D y.t/, where y W J0! U is the unique solution
to (D.1)–(D.2). Then � is smooth.

Proof. Consider the following autonomous initial value problem for the nC1 func-
tions y0; : : : ; yn:

Py0.t/D 1I

Pyi .t/D V i
�
y0.t/; y1.t/; : : : ; yn.t/

�
; i D 1; : : : ; nI

y0.t0/D t0I

yi .t0/D c
i ; i D 1; : : : ; n:

(D.20)

Any solution to (D.20) satisfies y0.t/D t for all t , and therefore
�
y1; : : : ; yn

�
solves

the nonautonomous system (D.1)–(D.2); and conversely, any solution to (D.1)–(D.2)
yields a solution to (D.20) by setting y0.t/D t . Theorem D.1 guarantees that there
is an open interval J0 �R containing s0 and an open subset W0 � J �U contain-
ing .s0; x0/, such that for any .t0; c/ 2W0 there exists a unique solution to (D.20)
defined for t 2 J0, and the solution depends smoothly on .t; t0; c/. Shrinking J0 and
W0 if necessary, we may assume that J0 � J and W0 D J0 � U0 for some open
subset U0 � U . The result follows. �

Simple Solution Techniques

To get the most out of this book, you need to be able to find explicit solutions to a
few differential equations and systems of differential equations. You have probably
learned a variety of solution techniques for such equations. The following simple
types of equations are more than adequate for the needs of this book.
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Separable Equations

A first-order differential equation for a single function y.t/ that can be written in
the form

y0.t/D f
�
y.t/

�
g.t/;

where f and g are continuous functions with f nonvanishing, is said to be separa-
ble. Any separable equation can be solved (at least in principle) by dividing through
by f

�
y.t/

�
, integrating both sides, and using substitution to transform the left-hand

integral:

y0.t/

f .y.t//
D g.t/;

Z
y0.t/ dt

f .y.t//
D

Z
g.t/dt;

Z
dy

f .y/
D

Z
g.t/dt:

If the resulting indefinite integrals can be computed explicitly, the result is a relation
involving y and t that can (again, in principle) be solved for y. The constant of inte-
gration can then be adjusted to achieve the desired initial condition for y. Separable
equations include those of the form y0.t/D g.t/ as a trivial special case, which can
be solved by direct integration.

2� 2 Constant-Coefficient Linear Systems

A system of the form

x0.t/D ax.t/C by.t/;

y0.t/D cx.t/C dy.t/;
(D.21)

where a; b; c; d are constants, can be written in matrix notation as Z0.t/D AZ.t/,
where

Z.t/D

�
x.t/

y.t/

�
; AD

�
a b

c d

�
:

The set of solutions to this type of system always forms a 2-dimensional vector
space over R. Once two linearly independent solutions have been found, every other
solution is a linear combination of these, and the constants can be adjusted to match
any initial conditions.

It is always possible to find at least one (perhaps complex-valued) solution of
the form Z.t/D e�tZ0, where 
 is an eigenvalue of A and Z0 is a corresponding
eigenvector. If A has two distinct eigenvalues, then there are two such solutions, and
they span the solution space. (If the initial conditions are real, then the corresponding
solution is real.) On the other hand, ifA has only one eigenvalue, there are two cases.
If A � 
I2 ¤ 0, then there is a vector Z1 (called a generalized eigenvector) such
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that .A � 
I2/Z1 D Z0, and a second linearly independent solution is given by
Z.t/D e�t .tZ0 CZ1/. Otherwise, AD 
I2, and the two equations in (D.21) are
uncoupled and can be solved independently.

Partially Uncoupled Systems

If one of the differential equations in (D.1), say the equation for Pyi .t/, involves
none of the dependent variables other than yi .t/, then one can attempt to solve that
equation first and substitute the solution into the other equations, thus obtaining
a system with fewer unknown functions, which might be solvable by one of the
methods above.

I Exercise D.7. Solve the following initial value problems.

(a) x0.t/D x.t/2I x.0/D x0.

(b) x0.t/D
1

x.t/
I x.0/D x0 > 0.

(c) x0.t/D yI x.0/D x0I

y0.t/D 1I y.0/D y0:

(d) x0.t/D xI x.0/D x0I

y0.t/D 2yI y.0/D y0:

(e) x0.t/D�yI x.0/D x0I

y0.t/D xI y.0/D y0:

(f) x0.t/D�x.t/C y.t/I x.0/D x0I

y0.t/D�x.t/� y.t/I y.0/D y0:

(g) x0.t/D 1I x.0/D x0I

y0.t/D
1

1C x.t/2
I y.0/D y0:
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Notation Index

Symbols
j�j (norm of a vector), 598, 637
j�j (density associated with an n-form), 428
j�jg (Riemannian norm), 330
Œ�� (equivalence class), 605
Œ�� (path class), 613
Œ�� (singular homology class), 470
Œ�� (cohomology class), 441
Œ��p (germ at p), 71
b�c (greatest integer function), 86
Œ: : : � (orientation determined by a basis), 379
Œ: : : � (geometric simplex), 468
h�; �i (inner product), 635
h�; �i (pairing between vectors and covectors),

274
h�; �ig (Riemannian inner product), 328, 437
.�; �/ (global inner product on forms), 439
Œ�; �� (bracket in a Lie algebra), 190
Œ�; �� (commutator bracket), 190
Œ�; �� (Lie bracket of vector fields), 186
f�; �g (Poisson bracket), 578
Y (cup product), 464
³ (interior multiplication), 358
X (set difference), 596
] (sharp), 342
# (connected sum), 225
� (Hodge star operator), 423, 438
^ (wedge product), 355
Z (alt convention wedge product), 357
� (congruent modulo H ), 551
' (homotopic), 612
� (path-homotopic), 612
� (diffeomorphic), 38

A
˛ˇ (symmetric product of ˛ and ˇ ), 315
A� (adjoint matrix), 167

A� (dual map), 273
A� (generic complex), 460
A�1 (inverse matrix), 625
Ak.V �/ (abstract alternating k-tensors), 374
A.w0; : : : ;wp/ (affine singular simplex), 468
Ab (category of abelian groups), 74
AB (product of subsets of a group), 156
Ad (adjoint representation of a Lie group), 533
ad (adjoint representation of a Lie algebra),

534
Alt (alternation), 351
Aut�.E/ (automorphism group of covering),

163

B
[ (flat), 342
ˇ (isomorphism between X.M/ and

�n�1.M/), 368, 423
xBn (closed unit ball), 599
Bn (open unit ball), 599
Bp.M/ (exact forms), 441
Bp.M/ (singular boundaries), 469
xBr.x/ (closed ball), 598
Br.x/ (open ball), 598

C
C (complex numbers), 599
Cn (complex n-space), 599
C� (nonzero complex numbers), 152
C 1 (continuously differentiable), 644
Ck (k times continuously differentiable), 15,

644
Ck.U / (Ck functions on U ), 645
C.M/ (algebra of continuous functions), 49
Cp.M/ (singular chain group), 468
C1 (infinitely differentiable), 11, 645
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Notation Index 679

C1.M/ (smooth functions on a manifold),
33

C1.U / (smooth functions on an open subset
of Rn), 645

C1p .M/ (set of germs at p), 71
C1p .M/ (smooth chain group), 473
C! (real-analytic), 15
cof j

i
(cofactor matrix), 634

CPn (complex projective space), 31, 465
CRng (category of commutative rings), 74
curl (curl operator), 426

D
@ (boundary of a manifold with boundary), 25
@ (boundary of a singular simplex), 469
@ (boundary of a subset), 597
@
�

(connecting homomorphism in singular
homology), 471

@� (connecting homomorphism in singular
cohomology), 473

@=@xi (coordinate vector field), 176
@=@xi jp (coordinate tangent vector), 60
@=@xi ja (partial derivative operator), 54
@f=@xj (partial derivative), 644
@i (i th boundary face), 468
@I (multiple derivative, 648
ı (connecting homomorphism in de Rham

cohomology), 461
ıi
j

(Kronecker delta), 82

ıJI (Kronecker delta for multi-indices), 352
� (geometric Laplacian), 436
� (Laplace–Beltrami operator), 464
�M (diagonal inM �M ), 132
�p (standard p-simplex), 468
d (differential of a map), 55
d (differential of a function), 281
d (distance function), 598
d (exterior derivative), 363
dg (Riemannian distance), 338
d� (adjoint of d ), 438
d=d	 (vector field on S1), 176
DM (density bundle), 429
D.p/ (domain of 	 .p/), 211
Dp.M/ (derivations of the space of germs),

71
D.V / (densities on a vector space), 428
Dvja (directional derivative at a), 52
Dvf .a/ (directional derivative of f at a),

52, 647
dAg (Riemannian area form), 422
det (determinant), 629
dF (global differential), 68
dF � (global pullback map), 300

DF.a/ (total derivative), 642
dFp (differential of a map), 55
dF �p (pointwise pullback), 284
Diff (category of smooth manifolds), 74
Diff
�

(category of pointed smooth manifolds),
74

Diff1 (category of smooth manifolds and
diffeomorphisms), 300

Diffb (category of smooth manifolds with
boundary), 74

dimM (dimension of a manifold), 3
dimV (dimension of a vector space), 620
div (divergence operator), 423
dsg (Riemannian length form), 422
dV (in integral notation), 651
dVg (Riemannian volume form), 422
dVg (Riemannian density), 433
dxI (coordinate basis form), 360

E
"i (dual basis), 273
"I (elementary k-covector), 352
e (identity in a Lie group), 151
ei (standard dual basis), 273
ei (standard basis vector), 620
.Ei / (local frame for TM ), 178
.Ei / (ordered basis), 619
E!M (vector bundle), 250
E.n/ (Euclidean group), 551
Ep (fiber over p), 249
E jS (restriction of a bundle), 255
exp (exponential map), 518
ExtS (exterior of a subset), 597

F
F � (induced de Rham cohomology map), 442
F � (induced singular cohomology map), 472
F � (pullback of a covector field), 285
F � (pullback of a density), 430
F � (pullback of a form), 360
F � (pullback of a function), 49
F � (pullback of a tensor field), 320, 326
F � (pullback of an orientation), 383
F
�

(induced Lie algebra homomorphism), 195
F
�

(induced singular homology map), 470
F
�

(pushforward), 183, 326
f � g (path product), 613
Fi;p (i th face map), 469
FK.V / (set of flags), 555
F] (induced homomorphism on chains), 470
F .S/ (free vector space on a set), 308

G

 0.t0/ (velocity of a curve), 69



680 Notation Index

�.E/ (space of smooth sections of E ), 257
�.f / (graph of f ), 5
yg (tangent-cotangent isomorphism), 341
xg (Euclidean metric), 339
Vg (round metric), 333
G=H (set of left cosets), 551
gij (metric coefficients), 328
gij (inverse of gij ), 342
Gk.Cn/ (complex Grassmannian), 562
G.k;n/ (Grassmannian), 22
Gk;n (Grassmannian), 22
Gk.V / (Grassmannian), 22
GL.n;C/ (complex general linear group), 152
gl.n;C/ (matrix Lie algebra), 191
GL.n;R/ (general linear group), 19, 151
gl.n;R/ (matrix Lie algebra), 190
GL.V / (group of invertible linear maps), 152
gl.V / (Lie algebra of linear maps), 191
GL�.n;R/ (matrices with negative

determinant), 558
GLC.n;R/ (matrices with positive

determinant), 152, 158, 558, 563
g ı f (composition in a category), 73
g �p (left action), 161
G �p (orbit), 162
g �p (left action), 162
Gp (isotropy group of p), 162
g �U (image of U under g), 541
grad (gradient operator), 280, 342
Grp (category of groups), 74

H
Hn (upper half-space), 25
H
p
c .M/ (compactly supported cohomology),

453
H
p
dR.M/ (de Rham cohomology), 441

Hp.M/ (singular homology), 469
Hp.M IR/ (real singular cohomology), 472
Hp.M IG/ (singular cohomology), 472
H1p .M/ (smooth singular homology), 473
Hom.C/ (morphisms in a category), 73
HomC.V;W / (morphisms in a category), 73
Hom.V;W / (group homomorphisms), 640
HomR.V;W / (space of R-linear maps), 640

IR
A f dV (integral in Rn), 650, 652R
D ! (integral of a form in Rn), 402R
� ! (line integral of a covector field), 289R
� X � ds (line integral of vector field), 302R
M f dVg (integral of a function on a

Riemannian manifold), 422, 433R
M ! (integral of a form over a manifold), 405

I (de Rham homomorphism), 482
I (integration map on forms), 454
I (multi-index), 351, 648
I (unit interval), 599
jI j (length of a multi-index), 648
I.D/ (forms that annihilateD), 495
In (identity matrix), 624
Ip.D/ (p-forms that annihilate D), 495
Ip (smooth functions that vanish at p), 299
I� (permuted multi-index), 351
iv (interior multiplication), 358
IdX (identity morphism), 73
ImT (image of T ), 622
IntM (interior of a manifold with boundary),

25
IntS (interior of a subset), 597

K
KerT (kernel of T ), 622

L
ƒkT �M (bundle of alternating tensors), 359
ƒk.V �/ (space of alternating covariant

tensors), 315, 350
ƒn (set of Lagrangian subspaces), 592
ƒ.V �/ (space of alternating tensors), 357
L.f;P / (lower sum), 650
Lg (left translation), 151
Lg (length of a curve), 337
L.V IW / (space of linear maps), 20, 325, 626
L.V1; : : : ;VkIW / (space of multilinear

maps), 305
LV (Lie derivative), 228, 321
lie (category of Lie algebras), 196
Lie (category of Lie groups), 196
Lie.G/ (Lie algebra of G), 191

M
�M (M with opposite orientation), 407
M (orientation covering), 394
M=G (orbit space), 541
M.m� n;C/ (complex matrices), 19, 624
M.m� n;R/ (real matrices), 19, 624
M.n;C/ (square complex matrices), 19, 624
M.n;R/ (square real matrices), 19, 624
Mn (manifold of dimension n), 3
Mt (domain of time-t flow), 212
Man (category of topological manifolds), 73
Man
�

(category of pointed topological
manifolds), 74

Manb (category of topological manifolds with
boundary), 74

N
N�S (conormal bundle), 592
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NxM (normal space toM ), 138, 337
NM (normal bundle), 138, 337

O
˚ (direct sum), 202, 621, 640
˝ (tensor product), 305, 306, 308
y! (tangent-cotangent isomorphism), 565
!g (Riemannian volume form), 389
!G (Haar volume form), 410
��.M/ (smooth forms), 360
�k.M/ (smooth k-forms), 360
�
p
c .M/ (compactly supported forms), 453

O (orbit relation), 543
o.n/ (skew-adjoint matrices), 197
O.n/ (orthogonal group), 166
Ob.C/ (objects in a category), 73

P
�1.X;q/ (fundamental group), 613Q
˛2AV˛ (Cartesian product), 639

 t1;t0 (time-dependent flow), 237
p � g (right action), 162
P.V / (projectivization), 49
PD (Poincaré duality map), 489

R
R (real numbers), 598, 617
R� (nonzero real numbers), 152
RC (positive real numbers), 152
R0 (0-dimensional Euclidean space), 598
Rn (n-dimensional Euclidean space), 17, 598
xRn
C

(subset of Rn where all coordinates are
nonnegative), 415

Rna (geometric tangent space), 51
RPn (real projective space), 6
Rg (right translation), 151
Rng (category of rings), 74

S
�˛ (permuted tensor), 314
.�i / (local frame for a vector bundle), 257
†k.V �/ (symmetric covariant tensors on a

vector space), 314P
0 (sum over increasing multi-indices), 353

S CT (sum of subspaces), 621
S1 (unit circle), 31, 152
Sn (unit n-sphere), 599
xS (closure of a subset), 597
Sk (symmetric group), 314, 629
SL.n;C/ (complex special linear group), 158
sl.n;C/ (traceless complex matrices), 203
SL.n;R/ (special linear group), 158
sl.n;R/ (traceless matrices), 203
SO.n/ (special orthogonal group), 167

S? (symplectic complement), 565
S? (orthogonal complement), 637
SU.n/ (special unitary group), 168
su.n/ (skew-adjoint traceless matrices), 203
Set (category of sets), 73
Set
�

(category of pointed sets), 74
sgn (sign of a permutation), 316, 629
Sp.2n;R/ (symplectic group), 591
span (span of a set of vectors), 618
supp (support of a function), 43
Sym (symmetrization), 314

T
	g (group action), 161
	 .p/ (orbit map), 166
	 .p/ (integral curve), 209, 212
	t (flow at time t ), 209, 212
� (tautological 1-form), 569
T �M (cotangent bundle), 276
TaRn (space of derivations at a), 52
T .k;l/TM (bundle of mixed tensors), 316
T .k;l/.V / (mixed tensors on a vector space),

312
T k.M/ (space of smooth tensor fields), 317
T kT �M (bundle of covariant tensors), 316
T kTM (bundle of contravariant tensors), 316
T k.V / (contravariant tensors on a vector

space), 312
T k.V �/ (covariant tensors on a vector space),

311
Tn (n-torus), 7
T �pM (cotangent space), 275
TpM (tangent space at p), 54
TM (tangent bundle), 65
TM jS (ambient tangent bundle), 255
Top (category of topological spaces), 73
Top
�

(category of pointed topological spaces),
74

U
U.f;P / (upper sum), 650
U.n/ (unitary group), 167
u.n/ (skew-adjoint matrices), 203

V
V � (dual space), 272
V �� (second dual space), 274
va (geometric tangent vector), 51
.vi / (ordered k-tuple of vectors), 618
vL (left-invariant vector field), 192
VpM (equivalence classes of curves), 72, 76
VB (category of smooth vector bundles), 300
VecC (category of complex vector spaces), 74
VecR (category of real vector spaces), 74
Vol (volume), 422, 649, 653



682 Notation Index

X
 (isomorphism between V and V �), 274
� (Cartesian product), 603
Ì (semidirect product), 168
X=� (quotient space), 605
X.M/ (smooth vector fields), 177
X�.M/ (smooth covector fields), 279
Xf (contact Hamiltonian vector field), 584
Xf (Hamiltonian vector field), 574
Xp (value of vector field at p), 174
x � y (dot product), 635

Y
Pyi (derivative with respect to t ), 663
Y jS (restriction of vector field), 185

Z
xz (complex conjugate), 636
Z (integers), 617
Zp.M/ (closed forms), 441
Zp.M/ (singular cycles), 469



Subject Index

0–9
0-dimensional manifold, 17
1-jet, 589
2-body problem, 593

A
A-tuple, 639
Abelian Lie algebra, 191, 203, 537
Abelian Lie group, 203, 537, 562
Abelianization, 487
Abstract tensor product, 308
Action

by a discrete group, 163, 548
by a group, 161–163
by a Lie algebra, 527–530
by a Lie group, 162–164, 541–547
by a local Lie group, 532
by automorphisms, 168
by conjugation, 163
by left or right translation, 163
by O.n/ on Rn, 542
by O.n/ on Sn�1, 542
by SO.n/ on Sn�1, 551
continuous, 161
covering space, 548
free, 162
left, 161
linear, 170
local one-parameter, 212
of GL.n;R/ on Rn, 163
on a discrete space, 172
proper, 542, 548
properly discontinuous, 548
right, 161
smooth, 161
transitive, 162
trivial, 163

Adapted chart, 545
Adjoint matrix, 167
Adjoint representation

of a Lie algebra, 534
of a Lie group, 534
of GL.n;R/, 539

Adjunction space, 605
Ado’s theorem, 199
Affine hyperplane, 280, 621
Affine map, 623
Affine singular simplex, 468
Affine subspace, 621
Affinely independent, 467
Algebra, 624

associative, 624
commutative, 624
division, 200
exterior, 357
graded, 357, 366
Lie, see Lie algebra
over R, 624

Algebraic dual space, 299
Almost every, 145
Alt convention, 358
Alternating tensor, 315, 350

and orientation, 379
basis for, 353
elementary, 352, 353

Alternation, 351
Ambient manifold, 99
Ambient tangent bundle, 255
Angle, 330, 636
Angle function, 31
Angular momentum, 593
Annihilate a distribution, 494
Anti-self-dual, 438
Anticommutativity, 356, 357
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684 Subject Index

Antiderivation, 366
Antiderivative, 294
Antihomomorphism of Lie algebras, 529
Antipodal map, 48, 397, 435
Antisymmetric tensor, 315
Approximation, linear, 50

and the differential, 282
Approximation theorem, Whitney

for functions, 136
for manifolds with boundary, 223
for maps to manifolds, 141

Associated local frame, 258
Atlas, 12

complete, 13
maximal, 13
smooth, 12

Attaching a space to another, 605
Attaching manifolds along boundaries, 224
Automorphism group of a covering, 163

acts properly, 549
is a Lie group, 163, 549

Autonomous system of ODEs, 236, 663

B
Backward reparametrization, 290
Baire category theorem, 611
Baker–Campbell–Hausdorff formula, 537
Ball

closed, 31, 598
coordinate, 4
open, 598, 599
regular coordinate, 15
smooth coordinate, 15, 28
unit, 599

Base
of a covering, 91, 615
of a fiber bundle, 268
of a vector bundle, 250

Bases, see basis
Basis

dual, 273
for a topology, 600
for a vector space, 619
neighborhood, 600
ordered, 619
standard, for Rn, 273, 620
topology generated by, 600

Basis isomorphism, 17, 623
Basis representation of a vector, 619
Bilinear, 305, 624
Bilinear form, 312
Block upper triangular, 634
Borel, Émile, 27
Bott, Raoul, 179

Boundary
induced orientation on, 386
induced volume form on, 391
invariance of, 26, 29, 39, 465
manifold with, see manifold with boundary
of a manifold with boundary, 25
of a manifold with corners, 417
of a singular simplex, 469
of a subset, 597
singular, 469
topological, 26

Boundary chart, 25
Boundary defining function, 118
Boundary face, 468
Boundary flowout theorem, 222
Boundary operator, singular, 469
Boundary slice chart, 122
Bounded linear map, 638
Bounded Riemannian manifold, 340
Bounded subset, 598
Bracket

commutator, 190
in a Lie algebra, 190
Lie, see Lie bracket
Poisson, 578

Bredon, Glen E., 486
Brouwer fixed-point theorem, 459
Bump function, 42, 44
Bundle

cotangent, 276
fiber, 268
isomorphic, 261, 262
line, 250
Möbius, 251, 252, 268, 270, 271, 393
normal, 138, 337
principal, 560
product, 251
smooth fiber, 268
smooth vector, 250
tangent, 65, 252
tensor, 316, 317
trivial, 250, 251, 268
vector, 249

Bundle homomorphism, 261
bijective, 262
characterization lemma, 262
covering a map, 261
over a space, 261
with constant rank, 266

Bundle isomorphism, 261, 262

C
Ck manifold, 15
Ck structure, 15
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C! structure, 15
Calibrated submanifold, 488
Calibration, 488
Canonical contact form on J 1M , 590
Canonical coordinates, 571
Canonical form

for a contact form, 584
for a linear map, 626
for a nonvanishing vector field, 220
for a symplectic tensor, 566
for commuting vector fields, 234

Canonical symplectic form on T �M , 569, 570
Cartan, Élie, 372
Cartan’s lemma, 375
Cartan’s magic formula, 372
Cartesian product, 603, 639
Category, 73

locally small, 74
small, 74

Catenoid, 345
Cauchy problem, 239, 240, 242, 586–590

general first-order, 590
Hamilton–Jacobi, 587
linear, 240
noncharacteristic, 240, 242, 587, 590
quasilinear, 242

Cauchy sequence, 598
uniformly, 656

Cauchy–Schwarz inequality, 636
Cayley numbers, 200
Center

of a group, 173, 539, 562
of a Lie algebra, 539

Centered at a point, 4
Central subgroup, 562
Chain

singular, 468
smooth, 473

Chain complex, 460
singular, 470

Chain group
singular, 468
smooth, 473

Chain map, 461
Chain rule

for partial derivatives, 647
for total derivatives, 643

Change of variables, 654
Characteristic curve of a first-order PDE, 244
Characteristic property

of surjective smooth submersions, 90
of the direct product, 639
of the direct sum, 640
of the disjoint union topology, 604

of the free vector space, 308
of the orientation covering, 398
of the product topology, 603
of the quotient topology, 605
of the subspace topology, 602
of the tensor product, 309

Characteristic submanifold, 592
Characteristic vector field, 242
Characteristics, method of, 244
Chart, 4

boundary, 25
boundary slice, 122
centered at a point, 4
flat, 496
for a manifold with boundary, 25, 28
interior, 25
interior slice, 122
oriented, 381
slice, 101
smooth, 12, 15
with corners, 415

Chart lemma
smooth manifold, 21
vector bundle, 253

Circle, 31, 599
fundamental group of, 614
not diffeomorphic to square, 75
unit, 599

Circle group, 152, 158
Lie algebra of, 193

Classification of smooth 1-manifolds, 398
with boundary, 398

Closed ball
in a metric space, 598
is a manifold with boundary, 31
unit, 599

Closed covector field, 294, 362
vs. exact, 294, 296

Closed curve segment, 292
Closed form, 294, 367

vs. exact, 294, 296, 367, 447
Closed Lie subgroup, 523, 525
Closed manifold, 27
Closed map, 606
Closed map lemma, 610
Closed rectangle, 649
Closed subgroup, 156, 159, 523, 525
Closed subgroup theorem, 523
Closed submanifold, 100
Closed subset, 596

relatively, 601
Closed unit ball, 599
Closest point to a submanifold, 147
Closure of a subset, 597



686 Subject Index

Cochain complex, 460
Cochain homotopy, 444
Cochain map, 461
Codimension

of a submanifold, 99, 108
of a submanifold with boundary, 120
of a subspace, 620

Codimension-zero submanifolds, 99, 120
Codomain, 625

restricting, 112, 113, 122
Cofactor, 634
Coframe

coordinate, 278
dual, 278
global, 278
local, 278

Cohomologous, 441
Cohomology

de Rham, see de Rham cohomology
of a complex, 460
singular, 472, 473

Cohomology class, 441
Cohomology map, induced, 442
Coisotropic immersion, 568
Coisotropic submanifold, 568
Coisotropic subspace, 566, 591
Collar neighborhood, 222
Column operations, elementary, 631
Column rank, 627
Commutative algebra, 624
Commutator bracket, 190
Commutator subgroup, 487
Commuting flows, 233
Commuting frame, 233
Commuting vector fields, 231–236

canonical form for, 234
Compact metric space, 610
Compact space, 608

continuous image of, 608
locally, 9, 611
product of, 609
quotient of, 609
subset of, 609

Compact subset, 608
union of, 609

Compactly supported cohomology, 453
Mayer–Vietoris theorem for, 488

Compactly supported form, 452
Compactly supported function, 43
Compactly supported vector field, 175
Compactness, 608

and convergent subsequences, 610
and limit points, 610

Comparison theorem for ODEs, 664

Compatible, smoothly, 12
Complement

orthogonal, 637
symplectic, 565

Complementary subspace, 621
Complete Lie algebra action, 527
Complete metric space, 598, 599, 610, 657
Complete Riemannian manifold, 340
Complete Riemannian metric, 340
Complete smooth atlas, 13
Complete vector field, 215–217
Completely integrable, 496

vs. involutive, 497
Completion of local frames, 178, 258
Complex

chain, 460
cochain, 460
de Rham, 460
of modules, 460
short exact sequence of, 461
singular chain, 470

Complex analytic structure, 15
Complex conjugate, 636
Complex Euclidean space, 599
Complex general linear group, 152, 158,

198
Complex manifold, 15
Complex numbers, 599
Complex projective space, 31, 48, 96, 172,

465, 560, 561
Complex special linear group, 158
Complex vector bundle, 250
Complex vector space, 617
Component

connected, 607
of a covector, 273
of a point in Rn, 598
of a topological space, 607
of a vector, 61
path, 608
with respect to a basis, 619

Component functions
of a covector field, 277, 279
of a section, 260
of a tensor field, 317
of a vector field, 175
of a vector-valued function, 644

Composition
in a category, 73
of C 1 functions, 647
of continuous maps, 597
of embeddings, 85
of immersions, 79
of smooth functions, 647
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Composition (cont.)
of smooth maps, 36
of submersions, 79

Congruent modulo a subgroup, 551
Conjugation in a Lie group, 153, 163
Connected component, 607
Connected space, 8, 607

continuous image of, 607
product of, 608
quotient of, 608
simply, 613
union of, 607

Connected subset, 607
Connected sum, 225, 465
Connecting homomorphism, 461, 471
Conormal bundle, 592
Conservation of energy, 578
Conservative covector field, 292

vs. exact, 292
Conservative force field, 577
Conservative vector field, 302
Conserved quantity, 579
Consistently oriented, 378, 382
Constant-coefficient ODEs, 673
Constant map, 597
Constant path, 613
Constant rank, 78, 83

bundle homomorphism with, 266
Constant-rank level set theorem, 105
Contact Darboux theorem, 584
Contact flowout theorem, 585
Contact form, 581
Contact Hamiltonian vector field, 584
Contact manifold, 581

orientability of, 594
Contact structure, 581
Contact vector field, 584
Continuity, 597, 602

of a linear map, 638
uniform, 609

Continuous homomorphism, 537
Continuously differentiable, 644
Contractible, 446
Contraction, 657
Contraction lemma, 657
Contravariant functor, 74
Contravariant tensor, 312
Contravariant tensor field, 317
Contravariant vector, 276
Convergent sequence, 597

pointwise, 656
uniformly, 656

Convergent series, 657

uniformly, 657
Convex subset, 618
Coordinate ball, 4

regular, 15
smooth, 15, 28

Coordinate basis, 61
Coordinate chart, see chart
Coordinate coframe, 278
Coordinate computations, 60–63
Coordinate covector field, 276
Coordinate cube, 4, 15
Coordinate domain, 4, 15
Coordinate frame, 178
Coordinate half-ball, 25, 28
Coordinate map, 4

smooth, 15
Coordinate neighborhood, 4

smooth, 15
Coordinate representation

of a covector field, 278
of a differential form, 360
of a function, 33
of a map, 35
of a point, 16
of a Riemannian metric, 328
of a tangent vector, 61
of a tensor field, 317
of a vector field, 175, 177
of the differential of a map, 63

Coordinate vector, 60
transformation law for, 64, 275

Coordinate vector field, 176
Coordinates

for vector bundles, 260
local, 4
natural, for the cotangent bundle, 277
natural, for the tangent bundle, 67
of a point in Rn, 598
polar, 660
slice, 101
spherical, 660
standard, for Rn, 17

Corner point, 416, 417, 435
Corners

chart with, 415
smooth manifold with, 415
smooth structure with, 415

Coset, 551, 622
Coset space, 551
Cotangent bundle, 276

canonical symplectic form on, 569, 570,
592

natural coordinates for, 277
triviality of, 300
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Cotangent functor, 301
Cotangent map, 284
Cotangent space, 275
Cotangent-tangent isomorphism, 341, 347

is not canonical, 303, 347
Countable

first, 600
second, 3, 600

Countable group, 152
Countable set, 600
Countable subcover, 601
Countably infinite, 600
Counterclockwise, 378, 379
Covariant functor, 74
Covariant tensor, 311
Covariant tensor field, 317

transformation law for, 326
Covariant vector, 276
Covector, 272

components of, 273
k-, 315, 350
tangent, 275
transformation law for, 275, 276, 286

Covector field, 277
closed, 294, 362
component functions of, 277
conservative, 292
coordinate, 276
exact, 292
integral of, 288, 289
on star-shaped domain, 296
pullback of, 285
restriction of, 287
rough, 277
smooth, 277
smoothness criteria for, 278
space of, 279
vanishing along a submanifold, 287

Cover, 601
open, 601

Covering group, universal, 154, 155
Covering manifold, 91

orientable, 392
universal, 94

Covering map, 91, 615
base of, 91
generalized, 393
injective, 91
product of, 92
proper, 96
smooth, 91
topological, 91

Covering space, 615
of a manifold, 92

of a manifold with boundary, 94
universal, 616

Covering space action, 548
Covering transformation, 163
Cramer’s rule, 24, 151, 634, 660
Critical point, 105, 347
Critical value, 105
Cross product, 202, 305
Cross section, 255
Cube, 649

coordinate, 4
smooth coordinate, 15
symmetry group of, 557

Cup product, 464
Curl, 302, 426
Curvature, 335
Curve, 68

closed, 292
derivative along, 283
in a submanifold, 124
integral, see integral curve
parametrized, 69
space-filling, 131
velocity of, 69

Curve segment, 288
length of, 301, 337
piecewise smooth, 288
smooth, 288

Cutoff function, 42
Cycle, singular, 469

homologous, 470

D
ı-close, 136
Darboux, Gaston, 571
Darboux coordinates, 571
Darboux theorem, 571, 573, 594

contact, 584
De Rham, Georges, 467
De Rham basis, 484
De Rham cohomology, 296, 441–464

and finite fundamental group, 447
cup product in, 464
diffeomorphism invariance of, 442
finite dimensionality of, 489
functoriality of, 442
homotopy invariance of, 443–446
in degree zero, 443
induced map on, 442
of a disjoint union, 442
of a nonorientable manifold, 457
of a simply connected manifold, 448
of an orientable manifold, 454
of Euclidean space, 447
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De Rham cohomology (cont.)
of punctured Rn, 450
of spheres, 450
of zero-manifolds, 443
top-degree, 454, 457
topological invariance of, 446
with compact support, 453, 488

De Rham complex, 460
De Rham cover, 484
De Rham group, 441
De Rham homomorphism, 482

naturality of, 482
De Rham manifold, 484
De Rham theorem, 484
Deck transformation, 163
Decomposable, 357, 374
Defining forms, 494
Defining function, 107

boundary, 118
for a regular domain, 121

Defining map, 107
and tangent space, 117

Defining representation, 169
Degree

of a continuous map, 459
of a differential form, 360
of a linear map, 366
of a proper map, 466
of a smooth map, 457–460

Delta, Kronecker, 82
Dense, 597

nowhere, 597
Dense curve on the torus, 86, 96
Dense subgroup of the torus, 158
Density, 427–434

integral of, 431, 432
negative, 429, 430
on a manifold, 430
on a vector space, 428
positive, 429, 430
pullback of, 430
Riemannian, 432

Density bundle, 429
Dependent k-tuple, linearly, 618
Dependent subset, linearly, 618
Derivation

at a point, 52, 54
of an algebra, 202
of C1.M/, 181
of the space of germs, 71

Derivative
directional, 52
exterior, see exterior derivative

Lie, see Lie derivative
partial, 644
total, 642–644
total vs. partial, 646
under an integral sign, 648

Determinant, 305, 401
and trace, 203, 536
and volume, 434
as a Lie group homomorphism, 153
differential of, 172
expansion by minors, 633, 634
is a tensor, 312
of a linear map, 633
of a matrix, 629
of a product, 632

Determinant convention, 358
Diagonal, 132, 148
Diameter of a subset, 598
Diffeomorphic, 38
Diffeomorphism

and constant rank, 83
between arbitrary subsets of Rn, 645
between manifolds, 38
between open subsets of Rn, 11, 645
local, 79

Diffeomorphism group acts transitively, 246
Diffeomorphism invariance

of de Rham cohomology, 442
of dimension, 39
of flows, 215
of the boundary, 39

Difference, set, 596
Differentiable, 642

continuously, 644
implies continuous, 643
infinitely, 645
vs. C 1, 647

Differentiable structure, 13
Differential

along a curve, 283
and linear approximation, 282
applied to a velocity vector, 70
as a bundle homomorphism, 262
commutes with Lie derivative, 323
coordinate formula for, 281, 282
exact, 292
global, 68
in coordinates, 61
of a constant, 282
of a function, 281
of a smooth map, 55
smoothness of, 68

Differential equation, see ordinary differential
equation or partial differential equation
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Differential form, 277, 319, 359–372
and orientation, 381
closed, 294, 367
conservative, 292
exact, 292, 367
integral of, 402–410
Lie derivative of, 372

Differential ideal, 496
Dimension

invariance of, 3, 39, 452
of a manifold, 2, 3
of a simplex, 468
of a vector space, 620
of an affine subspace, 622

Direct product, 638, 639
characteristic property of, 639
of Lie groups, 152

Direct sum, 621, 639
characteristic property of, 640
external, 640
internal, 640
of Lie algebras, 203

Directional derivative
in Rn, 52, 647
of a vector field, 227

Dirichlet eigenvalue, 437
Dirichlet’s approximation theorem, 86
Dirichlet’s principle, 437
Disconnected space, 607
Discontinuous, properly, 548
Discrete group, 152

action by, 163
Discrete kernel, 557
Discrete Lie group, 152

proper action by, 548
quotient by, 549

Discrete space, 598
Discrete subgroup, 556

quotient by, 556
Discrete topology, 598
Disjoint union, 604
Disjoint union topology, 604

characteristic property of, 604
Disk, unit, 599
Distance

associated to a norm, 637
in a metric space, 598
on a Riemannian manifold, 338

Distribution, 491
and differential forms, 493
completely integrable, 496
determined by a foliation, 502
integrable, 492
integral manifold of, 491

invariant under a diffeomorphism, 505
involutive, 492
left-invariant, 506
smooth, 491
spanned by vector fields, 491

Divergence, 423
and volume-preserving flows, 424
in coordinates, 436
on Rn, 368
product rule for, 436

Divergence theorem, 424
on a nonorientable manifold, 433

Division algebra, 200
Domain

coordinate, 4
of a map, 625
of integration, 653
regular, 120
restricting, 112, 122
smooth coordinate, 15

Donaldson, Simon, 40
Dot product, 19, 305, 312, 635

Hermitian, 168, 636
Double of a manifold with boundary, 226
Doughnut, see torus
Dual basis, 273
Dual bundle, 277
Dual coframe, 278
Dual homomorphism, 473
Dual map, 273
Dual space, 272

algebraic, 299
second, 274

Dual space functor, 274
Dummy index, 18
Dynamical systems, 222

E
Eigenfunction of the Laplacian, 437
Eigenvalue of the Laplacian, 437

Dirichlet, 437
Neumann, 437

Eikonal equation, 585, 594
Einstein summation convention, 18
Elementary alternating tensor, 352, 353
Elementary column operations, 631
Elementary k-covector, 352, 353
Elementary matrix, 632
Elementary row operations, 631
Embedded hypersurface, 99
Embedded subgroup, 156, 159, 525
Embedded submanifold, 98–104

closed vs. proper, 100
local slice criterion for, 101
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Embedded submanifold (cont.)
open, 99
properly, 100
weakly, 113, 500
with boundary, 120, 122

Embedded topological submanifold, 109
Embedding

composition of, 85
proper, 87
smooth, 85
topological, 85, 601, 607
vs. immersion, 87

Embedding theorem
local, 87
Whitney, 134, 135

Energy
kinetic, 578
potential, 577
total, 578

Equilibrium point, 220
Equivalence class, 605
Equivalence of categories, 538
Equivalence relation, 604

generated by a relation, 605
Equivalent norms, 638
Equivariant map, 164
Equivariant rank theorem, 165
Escape lemma, 217
Euclidean, locally, 3
Euclidean distance function, 345, 599
Euclidean dot product, 19, 635
Euclidean group, 168, 345, 551, 553
Euclidean metric, 328
Euclidean norm, 598, 637
Euclidean space, 598

as a Lie group, 152
as a manifold, 17
complex, 599
Lie algebra of, 192
real, 598
smooth structure on, 17, 40
standard coordinates for, 17
standard orientation of, 379

Euclidean topology, 599
Euler characteristic, 489
Euler vector field, 176
Euler’s homogeneous function

theorem, 199
Evaluation map, 191
Even permutation, 629
Evenly covered, 91, 615
Eventually in a subset, 600
Exact covector field, 292

locally, 297
vs. closed, 294, 296
vs. conservative, 292

Exact differential, 292
Exact form, 292, 367

locally, 297, 447
vs. closed, 294, 296, 367

Exact functor, 473
Exact sequence, 449, 460

of complexes, 461
Exhaustion by compact sets, 612
Exhaustion function, 46
Expansion by minors, 633, 634
Exponential map, 518

and one-parameter subgroups, 519
differential of, 519
is a local diffeomorphism, 519
nonsurjective, 537
of a Lie group, 518
of GL.n;R/, 519
smoothness of, 519

Exponential of a matrix, 517
Extension lemma

for smooth functions, 45, 115
for smooth maps, 141
for vector bundles, 257, 270
for vector fields, 176, 201

Extension of a Lie group, 562
Exterior algebra, 357
Exterior derivative, 362–372

commutes with Lie
derivative, 373

invariant formula for, 369, 370
naturality of, 366
of a 1-form, 369
vs. Lie bracket, 369

Exterior differentiation, 365
Exterior forms, 315, 350
Exterior of a subset, 597
Exterior product, 355
External direct sum, 640

F
F -related, 182
Face

boundary, 468
of a simplex, 468
opposite a vertex, 468

Face map, 469
Faithful representation

of a Lie algebra, 199
of a Lie group, 169

Fake R4, 40
Family of maps, smooth, 145
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Fiber
of a map, 605
of a vector bundle, 249

Fiber bundle, 268, 271
product, 268
smooth, 268
trivial, 268

Figure-eight, 86, 123
as immersed submanifold, 110

Finite group, 152
Finite-dimensional vector space, 619
First-countable, 600
First isomorphism theorem

for abstract groups, 555
for Lie groups, 556

First-order PDE, 239–244, 585–590
First-order system of PDEs, 510
Five lemma, 481
Fixed point, 459, 657
Flag manifold, 555, 562
Flat ([), 342
Flat chart

for a collection of submanifolds, 501
for a distribution, 496

Flat metric, 332, 333
on the torus, 345

Flat Riemannian manifold, 332, 333
Flow, 209–222

commuting, 233
diffeomorphism invariance of, 215
fundamental theorem on, 212
generated by a vector field, 214
global, 209
group laws for, 209, 211
is orientation-preserving, 397
local, 212
maximal, 212
naturality of, 215
of a vector field, 214
on a manifold with boundary, 227
time-dependent, 236–239
volume-decreasing, 424
volume-increasing, 424
volume-nondecreasing, 424
volume-nonincreasing, 424
volume-preserving, 424

Flow domain, 211
Flowout, 217
Flowout theorem, 217

boundary, 222
contact, 585
Hamiltonian, 581

Foliation, 501
and involutivity, 502

invariant under a diffeomorphism, 505
leaf of, 501

Forgetful functor, 75
Form

bilinear, 312
closed, 294, 367
conservative, 292
differential, see differential form
exact, 292, 367
Lie derivative of, 372

Formal linear combination, 308
Forward reparametrization, 290
Frame

associated with a local trivialization, 258
commuting, 233
coordinate, 178
dual to a coframe, 279
for a manifold, 178
global, 178, 257
holonomic, 233
left-invariant, 192
local, 178, 257
orthonormal, 178, 330
smooth, 178, 257

Free action of a group, 162
Free vector space, 308

characteristic property of, 308
Freedman, Michael, 40
Frobenius norm, 638
Frobenius theorem, 497

global, 502–505
Fubini’s theorem, 654
Full rank, 19, 78
Fully nonlinear PDE, 239, 585–590
Function, 32

real-valued, 32
smooth, 32, 645
vector-valued, 32
vs. map, 32

Function element, smooth, 71
Functional, linear, 272, 622
Functor, 74

contravariant, 74
cotangent, 301
covariant, 74
dual space, 274
exact, 473
smooth, 269, 299
tangent, 75

Fundamental group, 613
homotopy invariance of, 615
of a Lie group, 562
of a manifold is countable, 10
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Fundamental theorem
for autonomous ODEs, 664
for line integrals, 291
for nonautonomous ODEs, 672
of Sophus Lie, 532
on flows, 211–214
on Lie algebra actions, 527, 529

G
G-space, 161

homogeneous, 550
Galois, Évariste, 150
Gauss’s theorem, 424
General linear group, 19, 151

complex, 152, 158, 198
connected components of, 559
Lie algebra of, 193, 198
natural action of, 163
one-parameter subgroups of, 517

General position, 467
Generalized covering map, 393
Generalized eigenvector, 673
Generating curve, 107
Generator, infinitesimal, see infinitesimal

generator
Geometric Laplacian, 436
Geometric simplex, 468
Geometric tangent space, 51
Geometric tangent vector, 51
Germ, 71, 76
Global coframe, 278
Global differential, 68

as a bundle homomorphism, 262
Global flow, 209
Global frame, 178, 257

and trivial bundles, 259
Global Frobenius theorem, 502–505
Global parametrization, 111
Global rank theorem, 83
Global section of a vector bundle, 255
Global tangent map, 68
Global trivialization, 250, 268
Globally Hamiltonian, 575
Globally Lipschitz continuous, 609
Gluing lemma

for continuous maps, 602
for smooth maps, 35

Graded algebra, 357, 366
Gradient, 280, 342

is orthogonal to level sets, 347
Gram–Schmidt algorithm, 636

for frames, 179
Graph

is an embedded submanifold, 100, 101

of a continuous function, 5
of a smooth function, 20, 100, 101

Graph coordinates, 5, 6, 20, 333
Graph parametrization, 111
Grassmann manifold, see Grassmannian
Grassmannian, 22–24, 554, 561

is compact, 561
Green’s identities, 437
Green’s theorem, 415
Group

circle, 152
complex general linear, 152
discrete, 152
fundamental, 613
general linear, 151
injective, 473
Lie, 151
symmetric, 629
topological, 151

Group laws for a flow, 209, 211

H
Haar integral, 411
Haar volume form, 411
Hairy ball theorem, 435
Half-ball

coordinate, 25
regular coordinate, 28
smooth coordinate, 28

Half-slice, 122
Half-space, upper, 25
Hamilton–Jacobi equation, 585
Hamiltonian, 576
Hamiltonian flow, 576
Hamiltonian flowout theorem, 581
Hamiltonian system, 576
Hamiltonian vector field, 574, 575, 593

contact, 584
globally, 575
in Darboux coordinates, 574
is tangent to level sets, 575
locally, 575
on R2n, 575

Hamilton’s equations, 576
Harmonic form, 464
Harmonic function, 436
Harvey, Reese, 488
Hatcher, Allan, 548
Hausdorff space, 3, 600

product of, 603
subspace of, 602

Helicoid, 331, 345
Hermitian dot product, 168, 636
Hodge star operator, 438
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Hodge theorem, 464
Holonomic frame, 233
Homeomorphic, 597
Homeomorphism, 597, 607

local, 597
Homogeneous, positively, 199
Homogeneous function, 48
Homogeneous G-space, 550
Homogeneous manifold, 550
Homogeneous space, 550

characterization theorem, 552
construction theorem, 551

Homologous cycles, 470
Homologous submanifolds, 487
Homology

of a complex, 461
singular, 467–472
smooth singular, 473–480

Homology class, 470
Homomorphism

dual, 473
induced Lie algebra, 196
Lie algebra, 190, 195
Lie group, 153
of fundamental groups, 614
with discrete kernel, 557

Homotopic, path, 612
Homotopic maps, 612

and orientation, 435
are smoothly homotopic, 142, 224
relative to a subset, 612
smoothly, 142

Homotopy, 612
cochain, 444
relative to a subset, 612
smooth, 142

Homotopy equivalence, 614
Homotopy invariance

of de Rham cohomology, 443–446
of singular cohomology, 472
of singular homology, 470
of the fundamental group, 615

Homotopy inverse, 614
Homotopy operator, 444
Hopf action, 172, 560
Hopf map, 560
Hyperplane, 280, 620

affine, 280, 621
linear, 280, 620

Hypersurface, 109
embedded, 99
induced volume form on, 390
normal vector field along, 397

orientability of, 384
smooth, 109

I
Ideal

and normal subgroups, 535
differential, 496
in��.M/, 495
in a Lie algebra, 204, 533

Identity component, 157
Identity functor, 75
Identity map, 597
Identity matrix, 624
Identity morphism, 73
Identity of a Lie group, 151
Image

of a group homomorphism, 555
of a Lie group homomorphism, 157, 556
of a linear map, 622
of a smooth embedding, 99
of an injective smooth immersion, 109

Immersed submanifold, 108
with boundary, 120

Immersed topological submanifold, 109
Immersion, 78

and constant rank, 83
composition of, 79
is locally an embedding, 87
smooth, 78
topological, 78, 88
vs. embedding, 87

Immersion theorem
for manifolds with boundary, 84
Whitney, 135, 136, 147

Implicit function theorem, 661, 662
Improper integral, 407
Increasing multi-index, 353
Indefinite integral, 294
Independent k-tuple, linearly, 618
Independent subset, linearly, 618
Index

dummy, 18
in the denominator, 52
lower and upper, 18
of a subgroup, 396

Index conventions, 18
Index position, 18
Induced cohomology map, 442
Induced fundamental group homomorphism,

614
Induced Lie algebra homomorphism, 195, 196
Induced metric, 333
Induced orientation on a boundary, 386
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Infinite-dimensional vector space, 299, 619,
620

Infinitely differentiable, 11, 645
Infinitesimal generator

of a flow, 210, 212
of a group action, 527
of a left action, 529
of a right action, 527

Infinitesimal symmetry, 579
Initial submanifold, 114
Initial value problem, 663
Injective group, 473
Inner product, 327, 635

of matrices, 638
Inner product space, 635
Integers, 617
Integrable distribution, 492

completely, 496
vs. involutive, 492, 497

Integrable function
Lebesgue’s criterion for, 651
over a bounded set, 652
over a rectangle, 650

Integral
differentiation under, 648
improper, 407
iterated, 654
Lebesgue, 649
line, 287, 289
lower, 650
multiple, 649–656
of a covector field, 288, 289
of a density, 431, 432
of a differential form, 402–410
of a vector-valued function, 655
on a 0-manifold, 406
on a boundary, 406
on a manifold with corners, 418
on a Riemannian manifold, 422,

433
on a submanifold, 406
over a bounded set, 652
over a rectangle, 651
over a smooth chain, 481
over a smooth simplex, 481
over parametrizations, 408
Riemann, 649
upper, 650

Integral curve, 206–209
is immersed, 219
maximal, 212
naturality of, 208
of a time-dependent vector

field, 236

periodic, 245, 560
Integral manifold, 491

local structure of, 500
union of, 502

Integrating factor, 512
Integration, domain of, 653
Integration by parts, 436
Interior

of a manifold with boundary, 25
of a subset, 597

Interior chart, 25
Interior multiplication, 358

of differential forms, 362
Interior slice chart, 122
Internal direct sum, 621, 640
Internal semidirect product, 169
Intertwine, 164
Interval, 607

unit, 599
Invariance of dimension, 3, 39, 452
Invariance of the boundary, 26, 465

diffeomorphism, 39
smooth, 29

Invariant definition, 16
Invariant distribution, 505
Invariant foliation, 505
Invariant tensor field, 323, 324
Invariant under a flow, 231, 323

vs. Lie derivative, 324
Inverse function theorem, 657–660

for manifolds, 79
Inverse matrix, 625

Cramer’s rule for, 634
Invertible linear map, 622
Invertible matrix, 625
Involutive distribution, 492

and differential forms, 493
and Lie subalgebras, 492
differential ideal criterion for, 496
local coframe criterion for, 495
local frame criterion for, 493
vs. completely integrable, 497
vs. integrable, 492

Inward-pointing, 118, 200
Isolated point, 597
Isometric Riemannian manifolds, 332

locally, 332
Isometry

linear, 637
local, 332, 389
of Rn, 345
Riemannian, 332

Isomorphic Lie algebras, 190
Isomorphic Lie groups, 153
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Isomorphic vector bundles, 261
over a space, 262

Isomorphic vector spaces, 622
Isomorphism

basis, 623
bundle, 261
in a category, 73
Lie algebra, 190
Lie group, 153
of vector spaces, 622

Isomorphism theorem, first
for abstract groups, 555
for Lie groups, 556

Isotopy, smooth, 247
Isotropic immersion, 568
Isotropic submanifold

of a contact manifold, 585
of a symplectic manifold, 568

Isotropic subspace, 566, 591
Isotropy group, 162
Iterated integral, 654

J
Jacobi identity

for Lie brackets, 188
for Poisson brackets, 579
in a Lie algebra, 190

Jacobian determinant, 644
Jacobian matrix, 62, 644
Jet, 589
Jet bundle, 589

K
k-covector, 315, 350

elementary, 352, 353
k-form, see differential form
k-plane field, see distribution
k-vector, 374
Kernel

of a group homomorphism, 555
of a Lie algebra homomorphism, 203
of a Lie group homomorphism, 157, 203,

556
of a linear map, 622

Kervaire, Michel, 13, 40, 179
Killing, Wilhelm, 345
Killing vector field, 345
Kinetic energy, 578
Kronecker delta, 82

for multi-indices, 352

L
Lagrange multiplier, 301
Lagrangian immersion, 568

Lagrangian submanifold, 568, 592
and closed 1-form, 570

Lagrangian subspace, 566, 591
Laplace–Beltrami operator, 464, 465
Laplacian, 436, 465

Dirichlet eigenvalue of, 437
eigenfunction of, 437
eigenvalue, 437
geometric, 436
Neumann eigenvalue of, 437

Lawson, Blaine, 488
Leaf of a foliation, 501
Lebesgue integral, 649
Lebesgue measure, 651
Lebesgue’s integrability criterion, 651
Left action

by a group, 161
by a Lie algebra, 530

Left-invariant distribution, 506
Left-invariant frame, 192
Left-invariant orientation, 384
Left-invariant tensor field, 410
Left-invariant vector field, 189

is complete, 216
is smooth, 192
on a local Lie group, 532

Left translation, 151
Legendrian section, 590
Legendrian submanifold, 585
Lemniscate, 86
Length

in an inner product space, 636
isometry invariance of, 337
of a curve segment, 301, 337, 338
of a tangent vector, 330
parameter independence of, 338

Level set, 20, 104
of a constant-rank map, 105
of a smooth function, 47
of a submersion, 105
regular, 106

Lie, Sophus, 150, 532
fundamental theorems of, 532

Lie algebra, 190
abelian, 191, 203, 537
and one-parameter subgroups, 516
correspondence with Lie groups, 531
direct sum of, 203
isomorphic, 190
of a Lie group, 191
of a subgroup, 197, 521
of GL.n;C/, 198
of GL.n;R/, 193
of GL.V /, 195
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Lie algebra (cont.)
of O.n/, 197
of Rn, 192
of S1, 193
of SL.n;C/, 203
of SL.n;R/, 203
of SO.n/, 203
of Sp.2n;R/, 591
of SU.n/, 203
of Tn, 193
of U.n/, 203
one-dimensional, 202
representation of, 199
two-dimensional, 202

Lie algebra action, see action
Lie algebra homomorphism, 190, 530

induced, 195, 196
Lie algebra isomorphism, 190
Lie bracket, 186

coordinate formula for, 186
equals Lie derivative, 229
naturality of, 188
of vectors tangent to a submanifold, 189
pushforward of, 189
vs. exterior derivative, 369

Lie correspondence, 531
Lie derivative, 228–230

and invariant tensor field, 324
commutes with d , 323, 373
equals Lie bracket, 229
of a differential form, 372
of a tensor field, 321, 326
of a vector field, 228
on a manifold with boundary, 228

Lie group, 151
abelian, 203, 537, 562
and covering maps, 557
correspondence with Lie algebras, 531
countable, 152
discrete, 152
finite, 152
fundamental group of, 562
identity component of, 157, 172
integration on, 410, 411
is parallelizable, 192
Lie algebra of, 191
neighborhood of e in, 156
orientation form on, 410
product of, 152, 203
simply connected, 531
smooth structure is unique on, 538
universal covering of, 154, 155
volume form on, 411

Lie group homomorphism, 153, 530
image of, 556
kernel of, 157, 556
with discrete kernel, 557

Lie group isomorphism, 153
Lie subalgebra, 190, 197

determines a Lie subgroup, 506
Lie subgroup, 156

associated with a Lie subalgebra, 506
closed, 156, 159, 523, 525, 551
closure of, 537
embedded, 156, 157, 159, 523, 525
is weakly embedded, 506

Lift
of a map, 615
of a vector field, 202

Lifting criterion, 616
Lifting property

path, 616
unique, 616

Limit point, 597
Line bundle, 250
Line integral, 287, 289

fundamental theorem for, 291
of a covector field, 288, 289
of a vector field, 302
parameter independence of, 290

Line segment, 618
Line with two origins, 29
Linear action, 170
Linear approximation, 50

and the differential, 282
Linear combination, 618

formal, 308
Linear functional, 272, 622
Linear hyperplane, 280, 620
Linear isometry, 637
Linear map, 622

canonical form for, 626
determinant of, 633
over a ring, 639

Linear momentum, 593
Linear over C1.M/, 262
Linear subspace, 618
Linearly dependent k-tuple, 618
Linearly dependent subset, 618
Linearly independent k-tuple, 618
Linearly independent sections, 257
Linearly independent subset, 618
Linearly independent vector fields, 178
Lipschitz constant, 609
Lipschitz continuous, 609
Lipschitz estimate for C 1 functions, 655
Local action, 532
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Local coframe, 278
criterion for involutivity, 495

Local coordinates, 4
Local defining function, 107
Local defining map, 107
Local diffeomorphism, 79
Local embedding theorem, 87
Local exactness of closed forms, 297, 447
Local flow, 212
Local frame, 178, 257

associated with a local trivialization, 258
completion of, 178, 258
criterion for involutivity, 493
for a manifold, 178

Local homeomorphism, 597
Local isometry, 332, 389
Local Lie group, 532
Local one-parameter group action, 212
Local parametrization, 111, 333
Local section

linearly independent, 257
of a covering map, 92
of a map, 88
of a vector bundle, 255
spanning, 257

Local section theorem, 88
Local slice condition, 101

for submanifolds with boundary, 122
Local slice criterion, 101
Local trivialization, 250, 268

and local frame, 258
Locally compact, 9, 611
Locally compact Hausdorff space, 611
Locally Euclidean, 3
Locally exact, 297, 447
Locally finite, 9
Locally Hamiltonian, 575
Locally isometric, 332
Locally isomorphic, 532
Locally Lipschitz continuous, 609
Locally path-connected, 8, 608
Locally simply connected, 616
Locally small category, 74
Loop, 613
Lorentz metric, 2, 344
Lower integral, 650
Lower sum, 650
Lowering an index, 342

M
Manifold, 1, 2
Ck , 15
closed, 27
complex, 15

is metrizable, 341
open, 27
product of, 7
real-analytic, 15
smooth, 1, 13
topological, 1, 2

Manifold boundary, 26
Manifold with boundary, 24–29

local immersion theorem for, 84
partition of unity on, 44
product of, 29, 435
rank theorem for, 96
smooth, 28
smooth structure for, 28
tangent space to, 58
topological, 25

Manifold with corners, 415–419
corner points of, 435
product of, 435

Manifold with or without boundary, 26
Manifold without boundary, 26
Map, 32

vs. function, 32
Mapping, 32
Matrices, space of, 19, 624
Matrix, 623

Frobenius norm of, 638
inner product of, 638
of a linear map, 623
skew-symmetric, 627
symmetric, 167, 627

Matrix exponential, 517
Matrix Lie algebra, 190
Matrix product, 624
Maximal flow, 212
Maximal integral curve, 212
Maximal smooth atlas, 13
Mayer–Vietoris theorem

connecting homomorphism in, 464
for de Rham cohomology, 449–464
for singular cohomology, 473
for singular homology, 471
with compact support, 488

Measure zero
and smooth maps, 127
in manifolds, 128
in Rn, 126, 651
n-dimensional, 651
submanifold has, 131

Method of characteristics, 244
Metric

associated to a norm, 637
Euclidean, 328
flat, 332, 333
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Metric (cont.)
in a metric space, 598
Lorentz, 2, 344
product, 329
pseudo-Riemannian, 344
Riemannian, 327, 339
round, 333

Metric space, 598
compact, 610
complete, 598, 610, 657

Metric topology, 598
Metrizable, 340, 611
Milnor, John, 40, 179
Minor of a matrix, 634
Mixed partial derivatives, equality of, 646
Mixed tensor, 312
Mixed tensor field, 317

transformation law for, 326
Möbius band, 251

nonorientability of, 393
Möbius bundle, 251, 252, 268, 270, 271, 393,

397, 399
nonorientability of, 393

Möbius transformation, 551
Module, 617
Moise, Edwin, 40
Momentum, 577

angular, 593
linear, 593

Monodromy theorem, 616
Morphism, 73
Morse theory, 348
Moser, Jürgen, 571, 592, 593
Multi-index, 351

increasing, 353
Multicovector, 315, 350
Multilinear, 305, 629

over C1.M/, 318
Multiple integral, 649–656
Multivector, 374
Munkres, James, 40
Musical isomorphisms, 342

N
n-body problem, 576, 593
n-dimensional measure zero, 651
n-sphere, 599

is a topological manifold, 5
standard smooth structure on, 20

n-torus, 7
as a Lie group, 152
smooth structure on, 21

Natural coordinates
for the cotangent bundle, 277

for the tangent bundle, 67
Natural transformation, 302
Naturality

of flows, 215
of integral curves, 208
of the de Rham homomorphism, 482
of the Lie bracket, 188

Negatively oriented basis, 379
Negatively oriented chart, 382
Negatively oriented frame, 380
Neighborhood, 596

coordinate, 4
of a point, 596
of a set, 596
smooth coordinate, 15

Neighborhood basis, 600
Neumann eigenvalue, 437
Noether, Emmy, 580
Noether’s theorem, 580
Nonautonomous system of ODEs, 663
Noncharacteristic Cauchy problem, 240, 242,

587, 590
Nondegenerate 2-covector, 565
Nondegenerate 2-form, 567
Nondegenerate 2-tensor, 343
Nonlinear system of PDEs, 510
Nonorientable manifold, 380
Nonsingular matrix, 625
Norm

equivalent, 638
Euclidean, 598, 637
metric determined by, 637
of a differential form, 464
of a matrix, 638
of a tangent vector, 330
on a vector space, 637

Norm topology, 637
Normal bundle, 138, 337

is a vector bundle, 267, 337
trivial, 271, 398

Normal covering map, 163
Normal space, 138, 337
Normal subgroup, 153, 533, 535

and ideals, 535
Normal vector, 337
Normal vector field, 397

outward-pointing, 391
Normed linear space, 637
North pole, 30
Nowhere dense, 597
Null space, 622
Nullity, 626
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O
Object in a category, 73
Octonions, 200
Odd permutation, 629
ODE, see ordinary differential equation
One-form, 277
One-form criterion for involutivity, 494
One-parameter group action, 209

local, 212
One-parameter subgroup, 516, 536

and the Lie algebra, 516
generated by X , 516
of a Lie subgroup, 518
of GL.n;R/, 517

Open ball in a metric space, 598
Open cover, 601
Open manifold, 27
Open map, 606
Open rectangle, 649
Open subgroup, 152, 156
Open submanifold, 19, 28

is embedded, 99
tangent space tp, 56
with boundary, 28

Open subset
in a metric space, 598
in a topological space, 596
relatively, 601

Open unit ball, 599
Orbit

of a group action, 162
of a Hamiltonian system, 576

Orbit map, 166
Orbit relation, 543
Orbit space, 541
Order

of a partial derivative, 644
of a PDE, 239

Ordered basis, 619
Ordinary differential equation, 207

autonomous, 236, 663, 664
comparison theorem for, 664
existence theorem for, 664, 665, 672
fundamental theorem for, 664, 672
nonautonomous, 663, 672
smoothness theorem for, 664, 667,

672
uniqueness theorem for, 664, 667,

672
Orientable hypersurface, 384
Orientable manifold, 380

vs. parallelizable, 383
Orientation, 377–384

and alternating tensors, 379

and homotopic maps, 435
and nonvanishing n-form, 381
continuous, 380
induced on a boundary, 386
left-invariant, 384
of a 0-manifold, 380
of a boundary, 386
of a hypersurface, 384
of a manifold, 380
of a product manifold, 382
of a submanifold with boundary, 382
of a vector space, 379
pointwise, 380
pullback, 383
standard, of Rn, 379

Orientation covering, 394–397, 399
characteristic property of, 398
uniqueness of, 396

Orientation form, 381
Orientation-preserving action, 392
Orientation-preserving map, 383, 397
Orientation-reversing map, 383, 397
Oriented basis, 379
Oriented chart, 381

negatively, 382
Oriented double covering, 396
Oriented frame, 380
Oriented manifold, 380

with boundary, 380
Oriented n-covector, 380
Oriented n-form, 381
Oriented vector space, 379
Orthogonal, 330, 636
Orthogonal complement, 637
Orthogonal complement bundle, 267
Orthogonal group, 166

acting on Rn, 542
acting on Sn�1, 542
connected components of, 558
Lie algebra of, 197
special, 167, 558

Orthogonal matrix, 166
Orthogonal projection, 637
Orthonormal basis, 636
Orthonormal frame, 178, 330
Orthonormal vector fields, 178
Outward-pointing, 118, 200
Outward-pointing unit normal, 391
Overdetermined system of

PDEs, 507

P
Paracompact, 9, 49

vs. second-countable, 30
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Parallelizable, 179
implies orientable, 383
Lie groups, 192
spheres, 179, 200

Parameter independence
of length, 338
of line integrals, 290

Parametric transversality theorem, 145
Parametrization

global, 111
integration over, 408
local, 111, 333

Parametrized curve, 69
Partial derivatives, 644

equality of mixed, 646
higher-order, 644
order of, 644
second-order, 644
vs. total derivative, 646

Partial differential equation, 239
first-order, 239–244, 510, 585–590
fully nonlinear, 239, 585–590
linear, 240, 241
nonlinear, 242–244, 510, 585–590
overdetermined, 507, 510
quasilinear, 242–244
system of, 507, 510

Partition
of a closed rectangle, 649
of a set, 605
of an interval, 649

Partition of unity, 43, 44, 344
on a manifold with boundary, 44
smooth, 43

Passing to the quotient, 605
smoothly, 90

Path, 608
Path class, 613
Path class product, 613
Path component, 608
Path-connected, 8, 608

locally, 8, 608
Path-homotopic, 612
Path lifting property, 616
Path product, 613
PDE, see partial differential equation
Period

of a curve, 245
of a differential form, 487

Periodic curve, 245, 560
Permutation, 314, 316, 351, 628
Pfaffian system, 496
Piecewise smooth curve segment, 288
Plane field, see distribution

Plücker embedding, 561
Poincaré duality theorem, 489
Poincaré lemma, 447

for covector fields, 296
with compact support, 452

Pointed map, 74
Pointed set, 74
Pointed smooth manifold, 74
Pointed topological space, 74
Pointwise convergence, 656
Pointwise orientation, 380

continuous, 380
Pointwise pullback, 284, 320
Poisson bracket, 578, 579
Polar coordinates, 16, 361, 660
Poles, north and south, 30
Positively homogeneous function, 199
Positively oriented, see oriented
Potential energy, 577
Potential function, 292, 298
Power map, 48
Precompact, 611
Primitive, 294
Principal bundle, 560
Product

Cartesian, 603, 639
direct, 152, 638
exterior, 355
of covering maps, 92
of first-countable spaces, 603
of Hausdorff spaces, 603
of Lie groups, 152, 203
of manifolds with boundary, 435
of manifolds with corners, 435
of path classes, 613
of paths, 613
of second-countable spaces, 603
of vector spaces, 638
symmetric, 315, 325
wedge, 355

Product bundle, 251
Product fiber bundle, 268
Product manifold, 7

smooth map into, 36
smooth structure on, 21
tangent space to, 59

Product map, 603
Product metric, 329
Product open subset, 603
Product orientation, 382
Product rule, 52
Product smooth structure, 21
Product space, 603

fundamental group of, 614
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Product topology, 603
characteristic property of, 603

Projection
of a Cartesian product, 603
of a direct product, 639
of a fiber bundle, 268
of a vector bundle, 250
of the cotangent bundle, 276
of the tangent bundle, 65
onto a linear subspace, 622
orthogonal, 637

Projective plane, 6, 201
embeds into R4, 97

Projective space
complex, 31, 48, 96, 172, 465, 560, 561
orientability of, 393
real, 6, 7, 21, 48, 201

Projectivization, 49
Proper action, 542, 548
Proper embedding, 87
Proper map, 87, 610

is closed, 611
Properly discontinuous, 548
Properly embedded submanifold, 100, 120
Pseudo-Riemannian metric, 344
Pullback, 284, 320

of a 1-form, 285
of a closed covector field, 295
of a closed form, 442
of a density, 430
of a foliation, 513
of a k-form, 360, 361
of a mixed tensor field, 326
of a tensor field, 320, 326
of an exact covector field, 295
of an exact form, 442
of an exterior derivative, 366
pointwise, 284, 320

Pullback metric, 331
Pullback orientation, 383
Pushforward, 183

of a mixed tensor field, 326
of a vector field, 183
of the Lie bracket, 189

Q
QR decomposition, 559, 563
Quasilinear PDE, 242–244
Quaternion, 173, 200
Quotient

by a closed Lie subgroup, 551
by a discrete Lie group action, 549
by a discrete subgroup, 556
by a smooth group action, 544

Quotient manifold theorem, 544
Quotient map, 604, 607
Quotient space, 605

of a vector space, 622
passing to, 90, 605
uniqueness of, 90, 606

Quotient theorem
for abstract groups, 555
for Lie groups, 555

Quotient topology, 604
characteristic property of, 605

R
Raising an index, 342
Rank

column, 627
constant, 78
full, 19, 78
of a bundle homomorphism, 266
of a linear map, 77, 626
of a matrix, 627
of a smooth map, 77
of a tensor, 311
of a vector bundle, 249
row, 627

Rank-nullity law, 105, 627
Rank theorem, 81, 82

equivariant, 165
for a manifold with boundary, 96
global, 83
invariant version of, 83

Real-analytic manifold, 15
Real-analytic structure, 15
Real numbers, 598, 617
Real projective space, 6, 7, 21, 48, 201

orientability of, 393
Real-valued function, 32
Real vector space, 617
Rectangle, 649
Reeb field, 583, 584, 594
Refinement, 9
Reflexive relation, 604
Regular coordinate ball, 15
Regular coordinate half-ball, 28
Regular domain, 120
Regular level set, 106
Regular level set theorem, 106
Regular point

of a map, 105
of a vector field, 219

Regular sublevel set, 121
Regular submanifold, 99
Regular value, 105
Related, see F -related
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Relation, 604
Relative homotopy, 612
Relative topology, 601
Relatively open, 601
Remainder in Taylor’s theorem, 648
Reparametrization, 290, 337
Representation, 169, 170, 199, 533–535

adjoint, 534, 539
defining, 169
faithful, 169, 199
of a Lie algebra, 199
of a Lie group, 169

Rescaling lemma, 208
Restricting the codomain, 112, 122

to a weakly embedded
submanifold, 113

to an embedded submanifold, 113
to an integral manifold, 500

Restricting the domain, 112, 122
Restriction

of a covector field, 287
of a vector bundle, 255
of a vector field, 185

Retraction, 140
onto the boundary, 435

Reverse path, 613
Rham, de, see de Rham
Riemann integrable, 650
Riemann integral, 649, 651
Riemannian density, 432
Riemannian distance, 338
Riemannian geometry, 332
Riemannian isometry, 332
Riemannian manifold, 328

as a metric space, 339
flat, 332, 333
integration on, 421–427
with boundary, 328

Riemannian metric, 327
existence of, 329, 346
in graph coordinates, 333
on a surface of revolution, 334

Riemannian submanifold, 333
Riemannian volume form, 389

in coordinates, 389
on a hypersurface, 390

Right action
by a group, 161
by a Lie algebra, 527

Right-handed basis, 378, 379
Right-invariant vector field, 203
Right translation, 151
Rough covector field, 277
Rough section, 255

Rough vector field, 175
Round metric, 333
Row matrix, 273
Row operations, elementary, 631
Row rank, 627

S
� -compact, 30
Sard’s theorem, 129
Saturated, 605
Scalar, 618
Scalar multiplication, 617
Second-countable, 3, 600

vs. paracompact, 30
Second dual space, 274
Second-order partial derivative, 644
Section

component functions of, 260
global, 255
linearly independent, 257
local, 88, 92, 255
of a map, 88
of a vector bundle, 255
rough, 255
smooth, 255, 260
spanning, 257

Sedenions, 200
Segment

curve, 288
line, 618

Self-dual, 438
Semidirect product, 168, 169
Separable differential equation, 673
Sequence, 597

convergent, 597
Sequence lemma, 600
Series of functions, convergent, 657
Set difference, 596
Set with a transitive group action, 554
Sharp (]), 342
Sheets of a covering, 615
Short exact sequence, 461
Sign of a permutation, 316, 629
Signature of a bilinear form, 343
Simplex

affine singular, 468
boundary of, 469
geometric, 468
singular, 468
smooth, 473
standard, 468

Simply connected Lie group, 531
Simply connected manifold, cohomology of,

448
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Simply connected space, 613
covering of, 616
locally, 616

Singleton, 607
Singular boundary operator, 469
Singular chain, 468
Singular chain complex, 470
Singular chain group, 468
Singular cohomology, 472, 473
Singular homology, 467–472

is isomorphic to smooth singular, 474
smooth, 473–480

Singular matrix, 625, 632
Singular point of a vector field, 219
Singular simplex, 468

affine, 468
boundary of, 469

Skew-symmetric matrix, 627
Skew-symmetric tensor, 315
Slice, 101

of a product manifold, 100
Slice chart, 101

for a submanifold with boundary, 122
Slice condition

for submanifolds with boundary, 122
local, 101

Slice coordinates, 101
Smale, Steve, 40
Small category, 74
Smooth atlas, 12

complete, 13
maximal, 13

Smooth chain, 473
Smooth chain group, 473
Smooth chart, 12, 15

for a manifold with boundary, 28
Smooth coordinate ball, 15

in a manifold with boundary, 28
Smooth coordinate cube, 15
Smooth coordinate domain, 15
Smooth coordinate half-ball, 28
Smooth coordinate map, 15
Smooth coordinate neighborhood, 15
Smooth covector field, 277, 278
Smooth covering map, 91

generalized, 393
Smooth embedding, 85
Smooth family of maps, 145
Smooth frame, 178, 257
Smooth function

between Euclidean spaces, 11, 645
composition of, 647
on a manifold, 32
on a nonopen subset, 27, 45, 645, 647

Smooth function element, 71
Smooth functor, 269, 299
Smooth homotopy, 142
Smooth immersion, 78
Smooth invariance of the boundary, 29
Smooth isotopy, 247
Smooth manifold, 1, 13

chart lemma, 21
with boundary, 28

Smooth manifold structure, 13
Smooth map

between manifolds, 34
composition of, 36, 647
gluing lemma for, 35
on a nonopen subset, 27, 45, 645, 647

Smooth section, 255
Smooth simplex, 473
Smooth singular homology, 473–480

is isomorphic to singular, 474
Smooth structure, 13

determined by an atlas, 13
uniqueness of, 39, 40, 114, 115, 398
with corners, 415

Smooth subbundle, 264
Smooth submanifold, 109

with boundary, 120
Smooth submersion, 78
Smooth triangulation, 487
Smooth vector bundle, 250
Smooth vector field, 175
Smoothly compatible charts, 12
Smoothly homotopic maps, 142
Smoothly trivial bundle, 250, 268
Smoothness is local, 35
Source of a morphism, 73
Space-filling curve, 131
Span, 618
Spanning vector fields, 178
Special linear group, 158

complex, 158
is connected, 563
Lie algebra of, 203

Special orthogonal group, 167
action on Sn�1 by, 551
is connected, 558
Lie algebra of, 203

Special unitary group, 168
is connected, 558
Lie algebra of, 203

Sphere
de Rham cohomology of, 450
fundamental group of, 614
is a topological manifold, 5
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Sphere (cont.)
is an embedded submanifold, 103,

106
nonstandard smooth structures on, 40
orientation of, 385, 386, 397
round metric on, 333
standard metric on, 333
standard smooth structure on, 20
unit, 599
volume form of, 435

Spherical coordinates, 104, 388, 409,
660

Square
is not a smooth submanifold, 123
is not diffeomorphic to the circle, 75

Stabilizer, 162
Stable class of maps, 149
Standard basis for Rn, 620
Standard contact form on S2nC1, 583
Standard coordinates for Rn, 17
Standard dual basis for Rn, 273
Standard orientation of Rn, 379
Standard simplex, 468
Standard smooth structure

on a vector space, 18
on Rn, 17
on Sn, 20

Standard symplectic form, 568
Star operator, 438
Star-shaped, 296, 447, 614
Starting point of an integral curve, 206
Stereographic coordinates, 30, 269
Stereographic projection, 30, 31
Stokes orientation, 386
Stokes’s theorem, 411

for chains, 481
for surface integrals, 427
on manifolds with corners, 419

Subalgebra, Lie, 190, 197
Subbundle, 264

local frame criterion for, 265
smooth, 264
tangent, see distribution

Subcover, 601
Subgroup

closed, 156, 159, 523, 525, 551
discrete, 556
embedded, 156, 159, 523, 525
generated by a subset, 156
Lie, 156
normal, 153, 533, 535
one-parameter, 516
open, 152, 156

Subinterval, 649
Sublevel set, 46

regular, 121
Submanifold

calibrated, 488
closest point on, 147
codimension-zero, 99, 120
embedded, 98–104
has measure zero, 131
immersed, 108
initial, 114
open, 19, 28, 99
properly embedded, 100
regular, 99
Riemannian, 333
smooth, 109
tangent space to, 56, 115–117
tangent to, 184
topological, 109
uniqueness of smooth structure on, 114,

115
weakly embedded, 113, 115, 500
with boundary, 28, 120

Submatrix, 628
Submersion, 78

admits local sections, 88
and constant rank, 83
characteristic property of, 90
composition of, 79
is a quotient map, 89
is open, 89
smooth, 78
topological, 78, 89

Submersion level set theorem, 105
Submodule, 639
Subordinate to a cover, 43
Subrectangle, 650
Subspace

affine, 621
linear, 618
of a first-countable space, 602
of a Hausdorff space, 602
of a second-countable space, 602
of a vector space, 618
projection onto, 622
topological, 601, 618

Subspace topology, 601
characteristic property of, 602

Sum
connected, 225
direct, 621
lower, 650
upper, 650

Summation convention, 18
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Support
of a function, 43
of a section, 256
of a vector field, 175

Surface integral, 426
Stokes’s theorem for, 427

Surface of revolution, 107, 334
flatness criterion for, 335
Riemannian metric on, 334

Sylvester’s law of inertia, 343
Symmetric group, 314, 316, 629
Symmetric matrix, 167, 627
Symmetric product, 315, 325
Symmetric relation, 604
Symmetric tensor, 314

dimension of the space of, 325
Symmetric tensor field, 319
Symmetrization, 314
Symmetry, infinitesimal, 579
Symmetry group, 162
Symplectic basis, 567
Symplectic complement, 565
Symplectic coordinates, 571
Symplectic form, 567

canonical, on T �M , 569, 570
on a vector space, 565
standard, 19, 568

Symplectic geometry, 568
Symplectic group, 591
Symplectic immersion, 568
Symplectic manifold, 568
Symplectic structure, 568

on spheres, 591
Symplectic submanifold, 568
Symplectic subspace, 566, 591
Symplectic tensor, 565

canonical form for, 566
Symplectic topology, 568
Symplectic vector field, 575, 593
Symplectic vector space, 565
Symplectomorphism, 568, 591

T
Tangent bundle, 65

is a vector bundle, 252
natural coordinates for, 67
smooth structure on, 66
triviality of, 300
uniqueness of smooth structure on, 260

Tangent-cotangent isomorphism, 341, 347
is not canonical, 303, 347

Tangent covector, 275
Tangent distribution, see distribution
Tangent functor, 75, 269

Tangent map, 63, 68
Tangent space

alternative definitions of, 71–73
geometric, 51
to a manifold, 54
to a manifold with boundary, 58
to a product manifold, 59
to a submanifold, 115–117
to a vector space, 59
to an open submanifold, 56

Tangent space functor, 75
Tangent subbundle, see distribution
Tangent to a submanifold, 184
Tangent vector

alternative definitions of, 71–73
geometric, 51
in Euclidean space, 51
local nature, 56
on a manifold, 54
transformation law for, 276

Target of a morphism, 73
Tautological 1-form, 569
Tautological vector bundle, 271
Taylor polynomial, 648
Taylor’s theorem, 53, 648
Tensor, 311

alternating, 315
contravariant, 312
covariant, 311
elementary alternating, 352
mixed, 312
symmetric, 314

Tensor bundle, 316, 317
Tensor characterization lemma, 318
Tensor field, 317

invariant, under a flow, 323
smooth, 317
symmetric, 319
time-dependent, 573
transformation law for, 326

Tensor product
abstract, 308
characteristic property of, 309
of multilinear functions, 306
of vector spaces, 308
of vectors, 308
uniqueness of, 324

Time-dependent flow, 236–239, 571
Time-dependent tensor field, 573
Time-dependent vector field, 236–239, 571
Topological boundary, 26
Topological covering map, 91
Topological embedding, 85, 601, 607
Topological group, 151
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Topological immersion, 78, 88
Topological manifold, 1, 2

with boundary, 25
Topological space, 596
Topological submanifold, 109
Topological submersion, 78, 89
Topological subspace, 601, 618
Topology, 596

Euclidean, 599
generated by a basis, 600
metric, 598
norm, 637
trivial, 600

Tori, see torus
Torsion group, 448
Torus, 7

as a Lie group, 152
dense curve on, 86, 96, 110, 123, 502
dense subgroup of, 158
embedded, in R3, 97
flat metric on, 345
Lie algebra of, 193
n-dimensional, 7
of revolution, 78, 97, 108, 334, 397, 435,

488
smooth structure on, 21

Total derivative, 63, 642–644
vs. partial derivatives, 646

Total space
of a fiber bundle, 268
of a vector bundle, 250

Trajectory, 576
Transformation

of coordinate vectors, 64, 275
of covector components, 275, 276, 286
of tensor components, 326
of vector components, 64, 276

Transition function, 253, 269
Transition map, 12
Transition matrix, 378, 625
Transitive group action, 162

on a set, 554
Transitive Lie algebra action, 538
Transitive relation, 604
Translation, left and right, 151
Translation lemma, 208
Transpose

of a linear map, 273
of a matrix, 627

Transposition, 628
Transversality homotopy theorem, 146
Transversality theorem, parametric, 145
Transverse intersection, 143
Transverse maps, 148

Transverse to a submanifold, 143
Triangle inequality, 598, 637
Triangular matrix, upper, 634
Triangulation, 487
Trivial action, 163
Trivial bundle, 250, 251

and global frames, 259
Trivial cotangent bundle, 300
Trivial fiber bundle, 268
Trivial normal bundle, 271, 398
Trivial tangent bundle, 300
Trivial topology, 600
Trivialization

and local frames, 258
global, 250, 268
local, 250
smooth local, 250

Tube in RN , 132
Tubular neighborhood, 139
Tubular neighborhood theorem, 139
Two-body problem, 593

U
Uncoupled differential equation, 674
Uniform continuity, 609
Uniform convergence, 656, 657
Uniform time lemma, 216
Uniformly Cauchy, 656
Uniformly Lipschitz continuous, 609
Union, disjoint, 604
Unique lifting property, 616
Unit ball, 31, 599
Unit circle, 599
Unit disk, 599
Unit interval, 599
Unit-speed curve, 334, 345
Unit sphere, 599
Unit tangent bundle, 123, 344
Unit vector, 636
Unitary group, 167

is connected, 558
Lie algebra of, 203
special, 168

Unity, partition of, 43, 44
Universal coefficient theorem, 472
Universal covering group, 154, 155
Universal covering manifold, 91, 94
Universal covering space, 616
Upper half-space, 25
Upper integral, 650
Upper sum, 650
Upper triangular matrix, 634

block, 634
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V
Vanishing along a submanifold, 287
Vanishing to second order, 299
Vector

components of, 61
contravariant, 276
coordinate, 60
covariant, 276
geometric tangent, 51
in a vector space, 618
local nature of, 56
tangent, 51, 54
transformation law for, 64
velocity, 69, 70

Vector addition, 617
Vector bundle, 249

chart lemma, 253
complex, 250
construction theorem, 269
coordinates for, 260
isomorphic, 261
isomorphic over a space, 262
real, 249
section of, 255
smooth, 250
subbundle of, 264
trivial, 250

Vector field, 174
along a submanifold, 256, 384
along a subset, 176
canonical form for, 220, 234
commuting, 231–236
compactly supported, 216
complete, 215–217
component functions of, 175
conservative, 302
contact, 584
coordinate, 176
directional derivative of, 227
globally Hamiltonian, 575
Hamiltonian, 575, 593
invariant, under a flow, 231
Lie algebra of, 190
line integral of, 302
locally Hamiltonian, 575
pushforward of, 183
restriction of, 185
rough, 175
smooth, 175, 180
space of, 177
symplectic, 575, 593
time-dependent, 236–239

Vector space, 617
finite-dimensional, 619
infinite-dimensional, 299, 619, 620

over a field, 617
real, 617
smooth structure on, 17, 18
tangent space to, 59

Vector-valued function, 32
integral of, 655

Velocity, 69
differential applied to, 70
of a composite curve, 70
of a curve in Rn, 68

Vertex of a simplex, 468
Vertical vector, 376
Vertical vector field, 202
Vertices, see vertex
Volume

and determinant, 434
of a domain of integration, 653
of a rectangle, 649
of a Riemannian manifold, 422

Volume-decreasing flow, 424
Volume form, Riemannian, 389

in coordinates, 389
on a boundary, 391
on a hypersurface, 390

Volume-increasing flow, 424
Volume measurement, 401
Volume-nondecreasing flow, 424
Volume-nonincreasing flow, 424
Volume-preserving flow, 424

and divergence, 424

W
Weakly embedded, 113, 115, 500, 506
Wedge product, 355

Alt convention for, 358
anticommutativity of, 356
associativity of, 356
determinant convention for, 358
uniqueness of, 357

WeierstrassM -test, 657
Weinstein, Alan, 571
Whitney, Hassler, 135
Whitney approximation theorem

for functions, 136
for manifolds with boundary, 223
for maps to manifolds, 141

Whitney embedding theorem, 134, 135
Whitney immersion theorem, 135, 136, 147
Whitney sum, 254

Z
Zero-dimensional manifold, 17, 37
Zero section, 256
Zero set, 104
Zigzag lemma, 461
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